@article{RM_2010_65_3_a1,
author = {S. M. Gusein-Zade},
title = {Integration with respect to the {Euler} characteristic and its applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {399--432},
year = {2010},
volume = {65},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_3_a1/}
}
TY - JOUR AU - S. M. Gusein-Zade TI - Integration with respect to the Euler characteristic and its applications JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 399 EP - 432 VL - 65 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2010_65_3_a1/ LA - en ID - RM_2010_65_3_a1 ER -
S. M. Gusein-Zade. Integration with respect to the Euler characteristic and its applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 3, pp. 399-432. http://geodesic.mathdoc.fr/item/RM_2010_65_3_a1/
[1] O. Y. Viro, “Some integral calculus based on Euler characteristic”, Topology and geometry – Rohlin Seminar, Lecture Notes in Math., 1346, Springer, Berlin, 1988, 127–138 | DOI | MR | Zbl
[2] M. Kontsevich, Motivic integration, Lecture at Orsay, December 7, 1995
[3] J. Denef, F. Loeser, “Motivic Igusa zeta functions”, J. Algebraic Geom., 7:3 (1998), 505–537, arXiv: math/9803040 | MR | Zbl
[4] J. Denef, F. Loeser, “Germs of arcs on singular algebraic varieties and motivic integration”, Invent. Math., 135:1 (1999), 201–232 | DOI | MR | Zbl
[5] J. Denef, F. Loeser, “Motivic integration, quotient singularities and the McKay correspondence”, Compos. Math., 131:3 (2002), 267–290 | DOI | MR | Zbl
[6] V. V. Batyrev, D. I. Dais, “Strong McKay correspondance, string-theoretic Hodge numbers and mirror symmetry”, Topology, 35:4 (1996), 901–929 | DOI | MR | Zbl
[7] V. V. Batyrev, L. A. Borisov, “Mirror duality and string-theoretic Hodge numbers”, Invent. Math., 126:1 (1996), 183–203 | DOI | MR | Zbl
[8] V. V. Batyrev, “Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs”, J. Eur. Math. Soc. (JEMS), 1:1 (1999), 5–33 | DOI | MR | Zbl
[9] V. Batyrev, “Birational Calabi–Yau $n$-folds have equal Betti numbers”, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999, 1–11 | MR | Zbl
[10] M. Goresky, R. MacPherson, Stratified Morse theory, Ergeb. Math. Grenzgeb. (3), 14, Springer-Verlag, Berlin, 1988, 272 pp. | MR | Zbl
[11] A. N. Varčenko, “Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings”, Math. USSR-Izv., 6:5 (1972), 949–1008 | DOI | MR | Zbl
[12] N. A'Campo, “La fonction zêta d'une monodromie”, Comment. Math. Helv., 50:1 (1975), 233–248 | DOI | MR | Zbl
[13] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud., 61, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1968, 122 pp. | MR | MR | Zbl | Zbl
[14] Lê Dũng Tráng, “Some remarks on relative monodromy”, Real and complex singularities, Proc. Ninth Nordic Summer School/NAVF Sympos. Math. (Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 397–403 | MR | Zbl
[15] V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, v. II, Monogr. Math., 83, Monodromy and asymptotics of integrals, Birkhäuser, Boston, MA, 1988, viii+492 pp. | MR | MR | Zbl | Zbl
[16] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Partial resolutions and the zeta-function of a singularity”, Comment. Math. Helv., 72:2 (1997), 244–256 | DOI | MR | Zbl
[17] S. A. Broughton, “On the topology of polynomial hypersurfaces”, Singularities (Arcata, CA, 1981), Part 1, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983, 167–178 | MR | Zbl
[18] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Zeta functions for germs of meromorphic functions, and Newton diagrams”, Funct. Anal. Appl., 32:2 (1998), 93–99, arXiv: math/9705227 | DOI | MR | Zbl
[19] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Bifurcations and topology of meromorphic germs”, New developments in singularity theory (Cambridge, 2000), NATO Sci. Ser. II Math. Phys. Chem., 21, Kluwer Acad. Publ., Dordrecht, 2001, 279–304 | MR | Zbl
[20] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “On the topology of germs of meromorphic functions and its applications”, St. Petersburg Math. J., 11:5 (2000), 775–780 | MR | Zbl
[21] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “On the zeta-function of a polynomial at infinity”, Bull. Sci. Math., 124:3 (2000), 213–224 | DOI | MR | Zbl
[22] S. M. Gusein-Zade, D. Siersma, “Deformations of polynomials and their zeta-functions”, J. Math. Sci. (N. Y.), 144:1 (2007), 3782–3788 | DOI | MR | Zbl
[23] S. M. Gusein-Zade, F. Delgado, A. Campillo, “Integration with respect to the Euler characteristic over a function space and the Alexander polynomial of a plane curve singularity”, Russian Math. Surveys, 55:6 (2000), 1148–1149 | DOI | MR | Zbl
[24] A. Campillo, F. Delgado, S. M. Gusein-Zade, “The Alexander polynomial of a plane curve singularity and integrals with respect to the Euler characteristic”, Internat. J. Math., 14:1 (2003), 47–54 | DOI | MR | Zbl
[25] A. Lemahieu, Poincaré series of embedded filtrations, arXiv: 0906.4184
[26] A. Campillo, F. Delgado, K. Kiyek, “Gorenstein property and symmetry for one-dimensional local Cohen–Macaulay rings”, Manuscripta Math., 83:1 (1994), 405–423 | DOI | MR | Zbl
[27] A. Campillo, F. Delgado, S. M. Gusein-Zade, F. Hernando, “Poincaré series of collections of plane valuations”, Internat. J. Math. (to appear) , arXiv: 0903.3835
[28] A. Campillo, F. Delgado, S. M. Gusein-Zade, “The Alexander polynomial of a plane curve singularity via the ring of functions on it”, Duke Math. J., 117:1 (2003), 125–156 | DOI | MR | Zbl
[29] I. G. Macdonald, “The Poincaré polynomial of a symmetric product”, Math. Proc. Cambridge Philos. Soc., 58 (1962), 563–568 | DOI | MR | Zbl
[30] D. Eisenbud, W. Neumann, “Three-dimensional link theory and invariants of plane curve singularities”, Ann. Math. Stud., 110, Princeton Univ. Press, Princeton, NJ, 1985, 173 pp. | MR | Zbl
[31] S. M. Gusein-Zade, F. Delgado, A. Campillo, “On the monodromy of a plane curve singularity and the Poincaré series of the ring of functions on the curve”, Funct. Anal. Appl., 33:1 (1999), 56–57 | DOI | MR | Zbl
[32] S. M. Gusein-Zade, F. Delgado, A. Campillo, “The Alexander polynomial of plane curve singularities and rings of functions on curves”, Russian Math. Surveys, 54:3 (1999), 634–635 | DOI | MR | Zbl
[33] S. M. Gusein-Zade, F. Delgado, A. Campillo, “On the monodromy at infinity of a plane curve and the Poincaré series of its coordinate ring”, J. Math. Sci. (New York), 105:2 (2001), 1839–1842 | DOI | MR | Zbl
[34] A. Campillo, F. Delgado, S. M. Gusein-Zade, “Poincaré series of curves on rational surface singularities”, Comment. Math. Helv., 80:1 (2005), 95–102 | MR | Zbl
[35] W. Ebeling, “Poincaré series and monodromy of a two-dimensional quasihomogeneous hypersurface singularity”, Manuscripta Math., 107:3 (2002), 271–282 | DOI | MR | Zbl
[36] W. Ebeling, S. M. Gusein-Zade, “Poincaré series and zeta function of the monodromy of a quasihomogeneous singularity”, Math. Res. Lett., 9:4 (2002), 509–513 | MR | Zbl
[37] W. Ebeling, S. M. Gusein-Zade, “Monodromies and Poincaré series of quasihomogeneous complete intersections”, Abh. Math. Sem. Univ. Hamburg, 74:1 (2004), 175–179 | DOI | MR | Zbl
[38] F. Delgado, S. M. Gusein-Zade, “Poincaré series for several plane divisorial valuations”, Proc. Edinb. Math. Soc. (2), 46:2 (2003), 501–509 | DOI | MR | Zbl
[39] A. Campillo, F. Delgado, S. M. Gusein-Zade, “Poincaré series of a rational surface singularity”, Invent. Math., 155:1 (2004), 41–53 | DOI | MR | Zbl
[40] A. Campillo, F. Delgado, S. M. Gusein-Zade, “On Poincaré series of filtrations on equivariant functions of two variables”, Mosc. Math. J., 7:2 (2007), 243–255 | MR | Zbl
[41] S. M. Gusein-Zade, F. Delgado, A. Campillo, “Universal Abelian covers of rational surface singularities and multi-index filtrations”, Funct. Anal. Appl., 42:2 (2008), 83–88 | DOI | MR | Zbl
[42] A. Némethi, “Poincaré series associated with surface singularities”, Singularities I, Contemp. Math., 474, Amer. Math. Soc., Providence, RI, 2008, 271–297 | MR | Zbl
[43] A. Némethi, The Seiberg–Witten invariants of negative definite plumbed 3-manifolds, arXiv: 1003.1254
[44] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 1971, no. 40, 5–57 | MR | Zbl
[45] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 1974, no. 44, 5–77 | MR | Zbl
[46] V. I. Danilov, A. G. Khovanskii, “Newton polyhedra and an algorithm for computing Hodge–Deligne numbers”, Math. USSR-Izv., 29:2 (1987), 279–298 | DOI | MR | Zbl
[47] F. Bittner, “The universal Euler characteristic for varieties of characteristic zero”, Compos. Math., 140:4 (2004), 1011–1032 | DOI | MR | Zbl
[48] D. Abramovich, K. Karu, K. Matsuki, J. Włodarczyk, “Torification and factorization of birational maps”, J. Amer. Math. Soc., 15:3 (2002), 531–572 | DOI | MR | Zbl
[49] J. Włodarczyk, “Toroidal varieties and the weak factorization theorem”, Invent. Math., 154:2 (2003), 223–331 | DOI | MR | Zbl
[50] A. Campillo, F. Delgado, S. M. Gusein-Zade, “Multi-index filtrations and generalized Poincaré series”, Monatsh. Math., 150:3 (2007), 193–209 | DOI | MR | Zbl
[51] P. Ozsváth, Z. Szabó, “Holomorphic discs and knot invariants”, Adv. Math., 186:1 (2004), 58–116 | DOI | MR | Zbl
[52] J. Rasmussen, “Knot polynomials and knot homologies”, Geometry and topology of manifolds, Fields Inst. Commun., 47, Amer. Math. Soc., Providence, RI, 2005, 261–280, arXiv: math/0504045 | MR | Zbl
[53] E. Gorsky, Combinatorial computation of the motivic Poincaré series, arXiv: 0807.0491
[54] A. Craw, “An introduction to motivic integration”, Strings and geometry, Clay Math. Proc., 3, Amer. Math. Soc., Providence, RI, 2004, 203–225 | MR | Zbl
[55] E. Looijenga, “Motivic measures”, Astérisque, 2002, no. 276, 267–297 | MR | Zbl
[56] M. Musta{ţ}{ă}, “Jet schemes of locally complete intersection canonical singularities”, Invent. Math., 145:3 (2001), 397–424 | DOI | MR | Zbl
[57] M. Musta{ţ}{ă}, “Singularities of pairs via jet schemes”, J. Amer. Math. Soc., 15:3 (2002), 599–615 | DOI | MR | Zbl
[58] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Integration over spaces of nonparametrized arcs and motivic versions of the monodromy zeta function”, Proc. Steklov Inst. Math., 252:1 (2006), 63–73 | DOI | MR
[59] J. Denef, F. Loeser, “Lefschetz numbers of iterates of the monodromy and truncated arcs”, Topology, 41:5 (2002), 1031–1040 | DOI | MR | Zbl
[60] M. Kapranov, The elliptic curve in the $S$-duality theory and Eisenstein series for Kac–Moody groups, arXiv: math/0001005
[61] M. Larsen, V. A. Lunts, “Motivic measures and stable birational geometry”, Mosc. Math. J., 3:1 (2003), 85–95 | MR | Zbl
[62] D. Knutson, $\lambda$-rings and the representation theory of the symmetric group, Lecture Notes in Math., 308, Springer-Verlag, Berlin–New York, 1973, 203 pp. | DOI | MR | Zbl
[63] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett., 11:1 (2004), 49–57, arXiv: math/0407204 | MR | Zbl
[64] J. Burillo, “The Poincaré–Hodge polynomial of a symmetric product of compact Kähler manifolds”, Collect. Math., 41:1 (1990), 59–69 | MR | Zbl
[65] J. Cheah, “On the cohomology of Hilbert schemes of points”, J. Algebraic Geom., 5:3 (1996), 479–511 | MR | Zbl
[66] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., 18, Amer. Math. Soc., Providence, RI, 1999, 132 pp. | MR | Zbl
[67] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points”, Michigan Math. J., 54:2 (2006), 353–359 | DOI | MR | Zbl
[68] G. Ellingsrud, S. A. Strømme, “On a cell decomposition of the Hilbert scheme of points in the plane”, Invent. Math., 91:2 (1988), 365–370 | DOI | MR | Zbl
[69] L. Göttsche, “On the motive of the Hilbert scheme of points on a surface”, Math. Res. Lett., 8:5–6 (2001), 613–627 | MR | Zbl
[70] A. Oblomkov, V. Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link, arXiv: 1003.1568