Integrable billiards and quadrics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 319-379
Voir la notice de l'article provenant de la source Math-Net.Ru
Billiards inside quadrics are considered as integrable dynamical systems with a rich geometric structure. The two-way interaction between the dynamics of billiards and the geometry of pencils of quadrics in an arbitrary dimension is considered. Several well-known classical and modern genus-1 results are generalized to arbitrary dimension and genus, such as: the Poncelet theorem, the Darboux theorem, the Weyr theorem, and the Griffiths–Harris space theorem. A synthetic approach to higher-genera addition theorems is presented.
Bibliography: 77 titles.
Keywords:
hyperelliptic curve, Jacobian variety, periodic trajectories, Poncelet–Darboux grids, addition theorems.
Mots-clés : Poncelet porism
Mots-clés : Poncelet porism
@article{RM_2010_65_2_a2,
author = {V. Dragovi\'c and M. Radnovi\'c},
title = {Integrable billiards and quadrics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {319--379},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_2_a2/}
}
V. Dragović; M. Radnović. Integrable billiards and quadrics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 319-379. http://geodesic.mathdoc.fr/item/RM_2010_65_2_a2/