Mots-clés : Poncelet porism
@article{RM_2010_65_2_a2,
author = {V. Dragovi\'c and M. Radnovi\'c},
title = {Integrable billiards and quadrics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {319--379},
year = {2010},
volume = {65},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_2_a2/}
}
V. Dragović; M. Radnović. Integrable billiards and quadrics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 319-379. http://geodesic.mathdoc.fr/item/RM_2010_65_2_a2/
[1] V. V. Kozlov, D. V. Treschev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl
[2] J. V. Poncelet, Traité des propriétés projectives des figures, Mett, Paris, 1822; Reprint of the 2nd (1865) ed.: v. I, Les Grands Classiques Gauthier-Villars, Gauthier-Villars, Sceaux, 1995, xxxii+429 pp. ; Reprint of the 2nd (1866) ed.: v. II, 1995, viii+453 pp. | MR | MR
[3] Ya. K. G. Yakobi, Lektsii po dinamike, 2-e izd., ster., URSS, M., 2004, 271 pp.; C. G. J. Jacobi, Vorlesungen über Dynamik. Gesammelte Werke, Supplementband, G. Reimer, Berlin, 1884 | Zbl
[4] Ph. Griffiths, J. Harris, “A Poncelet theorem in space”, Comment. Math. Helv., 52:2 (1977), 145–160 | MR | Zbl
[5] G. Darboux, Principes de géométrie analytique, Gauthier-Villars, Paris, 1917 | MR | Zbl
[6] N. Trudi, “Rappresentazione geometrica immediata dell' equazione fondamentale nella teoria delle funzioni ellitiche con diverse applicazioni”, Memoria della R. Accademia delle Scienze di Napoli, 1853, 63–99
[7] N. Trudi, “Studii intorno ad una singolare eliminazione, con applicazione alla ricerca delle relazione tra gli elementi di due coniche, l'una iscritta, l'altra circoscritta ad un poligono, ed ai corrispondenti teoremi di Poncelet”, Atti di Napoli, 1 (1863)
[8] V. M. Buchstaber, A. P. Veselov, “Integrable correspondences and algebraic representations of multivalued groups”, Internat. Math. Res. Notices, 8 (1996), 381–400 | DOI | MR | Zbl
[9] A. Cayley, “Developments on the porism of the in-and-circumscribed polygon”, Philosophical magazine, 7 (1854), 339–345 | DOI
[10] A. Cayley, “Note on the porism of the in-and-circumscribed polygon”, Philosophical magazine, 6 (1853), 99–102 | DOI
[11] A. Cayley, “On the porism of the in-and-circumscribed triangle, and on an irrational transformation of two ternary quadratic forms each into itself”, Philosophical magazine, 9 (1855), 513–518 | DOI
[12] A. Cayley, “On the porism of the in-and-circumscribed triangle”, Quart. Math. J., 1 (1857), 344–354
[13] A. Cayley, “On the a posteriori demonstration of the porism of the in-and-circumscribed triangle”, Quart. Math. J., 2 (1858), 31–38
[14] A. Cayley, “On the porism of the in-and-circumscribed polygon”, Philos. Trans. R. Soc. Lond., 51 (1861), 225–239
[15] H. Lebesgue, Les coniques, Gauthier-Villars, Paris, 1942, viii+190 pp. | Zbl
[16] Ph. Griffiths, J. Harris, “On Cayley's explicit solution to Poncelet's porism”, Enseign. Math. (2), 24:1–2 (1978), 31–40 | MR | Zbl
[17] M. Berger, Geometry, v. I, Universitext, Springer-Verlag, Berlin, 1987, xiv+428 pp. ; v. II, x+406 pp. | DOI | MR | Zbl | MR
[18] W. Barth, Th. Bauer, “Poncelet theorems”, Expo. Math., 14:2 (1996), 125–144 | MR | Zbl
[19] W. Barth, J. Michel, “Modular curves and Poncelet polygons”, Math. Ann., 295:1 (1993), 25–49 | DOI | MR | Zbl
[20] B. Jakob, “Moduli of Poncelet polygons”, J. Reine Angew. Math., 436 (1993), 33–44 | DOI | MR | Zbl
[21] Shau-Jin Chang, B. Crespi, Kang-Jie Shi, “Elliptical billiard systems and the full Poncelet's theorem in $n$ dimensions”, J. Math. Phys., 34:6 (1993), 2242–2256 | DOI | MR | Zbl
[22] V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | MR | Zbl
[23] G. Darboux, “Sur les polygones inscrits et circonscrits à l'ellipso\"ide”, Bulletin de la Société philomathique, 7 (1870), 92–94 | Zbl
[24] V. Dragović, M. Radnović, “Conditions of Cayley's type for ellipsoidal billiard”, J. Math. Phys., 39:1 (1998), 355–362 | DOI | MR | Zbl
[25] V. Dragović, M. Radnović, “On periodical trajectories of the billiard systems within an ellipsoid in $\mathbb{R}^d$ and generalized Cayley's condition”, J. Math. Phys., 39:11 (1998), 5866–5869 | DOI | MR | Zbl
[26] V. Dragović, M. Radnović, “Cayley-type conditions for billiards within $k$ quadrics in $\mathbb R^d$”, J. Phys. A, 37:4 (2004), 1269–1276 | DOI | MR | Zbl
[27] V. Dragović, M. Radnović, “Corrigendum: Cayley-type conditions for billiards within $k$ quadrics in $\mathbb R^d$”, J. Phys. A, 38:36 (2005), 7927 | DOI | MR | Zbl
[28] V. Dragović, M. Radnović, “A survey of the analytical description of periodic elliptical billiard trajectories”, J. Math. Sci. (N. Y.), 135:4 (2006), 3244–3255 | DOI | MR
[29] V. Dragović, M. Radnović, “Geometry of integrable billiards and pencils of quadrics”, J. Math. Pures Appl. (9), 85:6 (2006), 758–790 | DOI | MR | Zbl
[30] J. Moser, A. P. Veselov, “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Comm. Math. Phys., 139:2 (1991), 217–243 | DOI | MR | Zbl
[31] A. P. Veselov, “Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space”, J. Geom. Phys., 7:1 (1990), 81–107 | DOI | MR | Zbl
[32] V. Dragović, B. Jovanović, M. Radnović, “On elliptical billiards in the Lobachevsky space and associated geodesic hierarchies”, J. Geom. Phys., 47:2–3 (2003), 221–234 | DOI | MR | Zbl
[33] V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR
[34] V. Dragović, “On integrable potential perturbations of the Jacobi problem for the geodesics on the ellipsoid”, J. Phys. A, 29:13 (1996), L317–L321 | DOI | MR | Zbl
[35] V. I. Dragovich, “Integrable perturbations of the Birkhoff billiard inside an ellipse”, J. Appl. Math. Mech., 62:1 (1998), 159–162 | DOI | MR | Zbl
[36] V. Dragović, “The Appell hypergeometric functions and classical separable mechanical systems”, J. Phys. A, 35:9 (2002), 2213–2221 | DOI | MR | Zbl
[37] Y. N. Fedorov, “An ellipsoidal billiard with quadratic potential”, Funct. Anal. Appl., 35:3 (2001), 199–208 | DOI | MR | Zbl
[38] V. V. Kozlov, “Some integrable generalizations of the Jacobi problem on geodesics on an ellipsoid”, J. Appl. Math. Mech., 59:1 (1995), 1–7 | DOI | MR | Zbl
[39] H. Knörrer, “Geodesics on the ellipsoid”, Invent. Math., 59:2 (1980), 119–143 | DOI | MR | Zbl
[40] M. Reid, The complete intersection of two or more quadrics, Ph. D. Thesis, Trinity College, Cambridge, 1972
[41] V. Dragović, M. Radnović, “Hyperelliptic Jacobians as billiard algebra of pencils of quadrics: Beyond Poncelet porisms”, Adv. Math., 219:5 (2008), 1577–1607 | DOI | MR | Zbl
[42] R. Donagi, “Group law on the intersection of two quadrics”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7:2 (1980), 217–239 | MR | Zbl
[43] E. Weyr, “Über einige Sätze von Steiner und ihren Zusammenhang mit der zwei und zweigliedrigen Verwandtschaft der Grundgebilde ersten Grades”, J. Reine Angew. Math., 71 (1870), 18–28 | DOI
[44] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, vol. 2, 3, Gauthier-Villars, Paris, 1915 | MR | Zbl
[45] V. V. Kozlov, “Rationality conditions for the ratio of elliptic integrals and the great Poncelet theorem”, Moscow Univ. Math. Bull., 58:4 (2003), 1–7 | MR | Zbl
[46] V. V. Kozlov, “Billiards, invariant measures, and equilibrium thermodynamics. II”, Regul. Chaotic Dyn., 9:2 (2004), 91–100 | DOI | MR | Zbl
[47] V. V. Kozlov, “Two-link billiard trajectories: extremal properties and stability”, J. Appl. Math. Mech., 64:6 (2000), 903–907 | DOI | MR | Zbl
[48] V. V. Kozlov, “Billiards, invariant measures, and equilibrium thermodynamics”, Regul. Chaotic Dyn., 5:2 (2000), 129–138 | DOI | MR | Zbl
[49] E. Gutkin, S. Tabachnikov, “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40:3–4 (2002), 277–301 | DOI | MR | Zbl
[50] M. Radnović, “A note on billiard systems in Finsler plane with elliptic indicatrices”, Publ. Inst. Math. (Beograd) (N.S.), 74 (2003), 97–102 | DOI | MR | Zbl
[51] S. Tabachnikov, “Ellipsoids, complete integrability and hyperbolic geometry”, Mosc. Math. J., 2:1 (2002), 185–196 | MR | Zbl
[52] J. Moser, “Geometry of quadrics and spectral theory”, The Chern Symposium, 1979: Proceedings of the International Symposium on Differential Geometry in honor of S.-S. Chern (Berkeley, CA, 1979), Springer, New York–Berlin, 1980, 147–188 | MR | Zbl
[53] D. D. Mordukhai-Boltovskoi, “Teorema Ponsle na ploskosti Lobachevskogo i ellipticheskie integraly”, Dokl. AN SSSR, 77:6 (1951), 961–964 | MR
[54] Shau Jin Chang, Kang Jie Shi, “Billiard systems on quadric surfaces and the Poncelet theorem”, J. Math. Phys., 30:4 (1989), 798–804 | DOI | MR | Zbl
[55] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, Boca Raton, FL, 2004, 730 pp. | MR | MR | Zbl | Zbl
[56] A. V. Bolsinov, S. V. Matveev, A. T. Fomenko, “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems with small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl
[57] A. V. Bolsinov, A. A. Oshemkov, “Singularities of integrable Hamiltonian systems”, Topological methods in the theory of integrable systems, Cambridge Sci. Publ., Cambridge, 2006, 1–67 | MR | Zbl
[58] E. Shlizerman, V. Rom-Kedar, “Hierarchy of bifurcations in the truncated and forced nonlinear Schrödinger model”, Chaos, 15:1 (2005), 013107, 22 pp. | DOI | MR | Zbl
[59] M. Radnović, V. Rom-Kedar, “Foliations of isonergy surfaces and singularities of curves”, Regul. Chaotic Dyn., 13:6 (2008), 645–668 | DOI | MR
[60] H. Waalkens, H. R. Dullin, “Quantum monodromy in prolate ellipsoidal billiards”, Ann. Physics, 295:1 (2002), 81–112 | DOI | MR | Zbl
[61] S. V. Bolotin, “Integrable Birkhoff billiards”, Mosc. Univ. Mech. Bull., 45:2 (1990), 1–13 | MR | Zbl
[62] D. Turaev, V. Rom-Kedar, “Soft billiards with corners”, J. Statist. Phys., 112:3–4 (2003), 765–813 | DOI | MR | Zbl
[63] A. V. Bolsinov, A. T. Fomenko, “The geodesic flow of an ellipsoid is orbitally equivalent to the integrable Euler case in the dynamics of a rigid body”, Russian Acad. Sci. Dokl. Math., 50:3 (1994), 412–417 | MR | Zbl
[64] M. Audin, “Courbes algébriques et systèmes intégrables: géodesiques des quadriques”, Expo. Math., 12:3 (1994), 193–226 | MR | Zbl
[65] A. Delshams, Y. Fedorov, R. Ramírez-Ros, “Homoclinic billiard orbits inside symmetrically perturbed ellipsoids”, Nonlinearity, 14:5 (2001), 1141–1195 | DOI | MR | Zbl
[66] J. Bertrand, “Mémoire sur les intégrales communes à plusieurs problèmes de Mécanique”, Jour. de Math., 17 (1852), 121–174
[67] G. Darboux, “Sur un problème de mécanique”, Archives Néerlandaises (2), 6:2 (1901), 371–376 | Zbl
[68] E. T. Uitteker, Analiticheskaya dinamika, 2-e izd., ispr., URSS, M., 2004, 500 pp.; E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies with an introduction to the problem of three bodies, 3rd ed., Univ. Press, Cambridge, 1927, xiv+456 pp. ; Reprint of the 1937 edition: Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1988, 456 pp. | Zbl | MR | Zbl
[69] A. Paul, “Sur les fonctions hypergéométriques de deux variables et sur des équations linéaires aux dérivées partielles”, Comptes Rendus, 90 (1880), 296–298
[70] P. E. Appell, J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques. Polynômes d'Hermite, Gauthier-Villars, Paris, 1926, 441 pp. | Zbl
[71] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavleniya grupp, 2-e izd., M., Nauka, 1991, 576 pp. ; N. Ja. Vilenkin, Special functions and the theory of group representations, Transl. Math. Monogr., 22, Providence, RI, Amer. Math. Soc., 1968, x+613 pp. | MR | Zbl | MR | Zbl
[72] M. S. Narasimhan, S. Ramanan, “Moduli of vector bundles on compact Riemann surfaces”, Ann. of Math. (2), 89:1 (1969), 14–51 | DOI | MR | Zbl
[73] A. N. Tyurin, “On intersection of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl
[74] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley, New York, 1978, 813 pp. | MR | Zbl | Zbl
[75] A. Hurwitz, “Üeber unendlich-vieldeutige geometrische Aufgaben, insbesondere über die Schliesungsprobleme”, Math. Ann., 15:1 (1879), 8–15 | DOI | MR | Zbl
[76] R. E. Schwartz, “The Poncelet grid”, Adv. Geom., 7:2 (2007), 157–175 | DOI | MR | Zbl
[77] M. Levi, S. Tabachnikov, “The Poncelet grid and the billiard in ellipses”, Amer. Math. Monthly, 114:10 (2007), 895–908 | MR | Zbl