Integrable billiards and quadrics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 319-379

Voir la notice de l'article provenant de la source Math-Net.Ru

Billiards inside quadrics are considered as integrable dynamical systems with a rich geometric structure. The two-way interaction between the dynamics of billiards and the geometry of pencils of quadrics in an arbitrary dimension is considered. Several well-known classical and modern genus-1 results are generalized to arbitrary dimension and genus, such as: the Poncelet theorem, the Darboux theorem, the Weyr theorem, and the Griffiths–Harris space theorem. A synthetic approach to higher-genera addition theorems is presented. Bibliography: 77 titles.
Keywords: hyperelliptic curve, Jacobian variety, periodic trajectories, Poncelet–Darboux grids, addition theorems.
Mots-clés : Poncelet porism
@article{RM_2010_65_2_a2,
     author = {V. Dragovi\'c and M. Radnovi\'c},
     title = {Integrable billiards and quadrics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {319--379},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_2_a2/}
}
TY  - JOUR
AU  - V. Dragović
AU  - M. Radnović
TI  - Integrable billiards and quadrics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 319
EP  - 379
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_2_a2/
LA  - en
ID  - RM_2010_65_2_a2
ER  - 
%0 Journal Article
%A V. Dragović
%A M. Radnović
%T Integrable billiards and quadrics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 319-379
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2010_65_2_a2/
%G en
%F RM_2010_65_2_a2
V. Dragović; M. Radnović. Integrable billiards and quadrics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 319-379. http://geodesic.mathdoc.fr/item/RM_2010_65_2_a2/