Mots-clés : bifurcation set
@article{RM_2010_65_2_a1,
author = {A. V. Bolsinov and A. V. Borisov and I. S. Mamaev},
title = {Topology and stability of integrable systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {259--318},
year = {2010},
volume = {65},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_2_a1/}
}
TY - JOUR AU - A. V. Bolsinov AU - A. V. Borisov AU - I. S. Mamaev TI - Topology and stability of integrable systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 259 EP - 318 VL - 65 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2010_65_2_a1/ LA - en ID - RM_2010_65_2_a1 ER -
A. V. Bolsinov; A. V. Borisov; I. S. Mamaev. Topology and stability of integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 259-318. http://geodesic.mathdoc.fr/item/RM_2010_65_2_a1/
[1] S. Smale, “Topology and mechanics. I”, Invent. Math., 10:4 (1970), 305–331 ; S. Smale, “Topology and mechanics. II. The planar $n$-body problem”, Invent. Math., 11:1 (1970), 45–64 | DOI | DOI | MR | MR | MR | Zbl | Zbl | Zbl
[2] V. V. Kozlov, “Topological obstacles to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20:6 (1970), 1413–1415 | MR | Zbl
[3] V. V. Kozlov, “Integrability and non-integrability in Hamiltonian mechanics”, Russian Math. Surveys, 38:1 (1983), 1–76 | DOI | MR | Zbl
[4] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer-Verlag, Berlin, 1996, 378 pp. | MR | MR | Zbl | Zbl
[5] A. T. Fomenko, Symplectic geometry, Adv. Stud. Contemp. Math., 5, Gordon and Breach, New York, 1988, 387 pp. | MR | MR | Zbl | Zbl
[6] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl
[7] A. T. Fomenko, Kh. Tsishang, “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 ; A. T. Fomenko, Kh. Tsishang, “Topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | MR | Zbl | DOI | Zbl
[8] T. I. Pogosian, M. P. Kharlamov, “Bifurcation set and integral manifolds of the problem concerning the motion of a rigid body in a linear force field”, J. Appl. Math. Mech., 43:3 (1979), 452–462 | DOI | MR | Zbl
[9] T. I. Pogosyan, “Postroenie bifurkatsionnykh mnozhestv v odnoi zadache dinamiki tverdogo tela”, Mekhanika tverdogo tela, 12, Naukova dumka, Kiev, 1980, 9–16 | MR | Zbl
[10] T. I. Pogosyan, “Oblasti vozmozhnosti dvizheniya i integralnye mnogoobraziya v zadache Klebsha. Regulyarnyi sluchai”, Mekhanika tverdogo tela, 16, Naukova dumka, Kiev, 1984, 12–19 | MR | Zbl
[11] T. I. Pogosyan, “Oblasti vozmozhnosti dvizheniya v zadache Klebsha. Kriticheskii sluchai”, Mekhanika tverdogo tela, 15, Naukova dumka, Kiev, 1983, 3–23 | MR | Zbl
[12] T. I. Pogosyan, “Oblasti vozmozhnosti dvizheniya v zadache Klebsha”, Mekhanika tverdogo tela, 16, Naukova dumka, Kiev, 1984, 19–24 | MR | Zbl
[13] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988, 200 pp. | MR
[14] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall, Boca Raton, FL, 2004, 730 pp. | MR | MR | Zbl | Zbl
[15] A. A. Oshemkov, “Fomenko invariants for the main integrable cases of the rigid body motion equations”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 67–146 | MR | Zbl
[16] M. P. Harlamov, P. E. Ryabov, “The bifurcations of the first integrals in the case of Kowalewski–Yehia”, Regul. Chaotic Dyn., 2:2 (1997), 25–40 | DOI | MR | Zbl
[17] O. E. Orel, P. E. Ryabov, “Bifurcation sets in a problem on motion of rigid body in fluid and in the generalization of this problem”, Regul. Chaotic Dyn., 3:2 (1998), 82–91 | DOI | MR | Zbl
[18] P. V. Morozov, “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | MR | Zbl
[19] P. V. Morozov, “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | MR | Zbl
[20] M. Yu. Ivochkin, “Topological analysis of the motion of an ellipsoid on a smooth plane”, Sb. Math., 199:6 (2008), 871–890 | DOI | MR | Zbl
[21] D. B. Zotev, “Phase topology of Appelrot class I of a Kowalewski top in a magnetic field”, J. Math. Sci. (N. Y.), 149:1 (2008), 922–946 | DOI | MR
[22] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | MR | Zbl
[23] M. Radnović, V. Rom-Kedar, “Foliations of isonergy surfaces and singularities of curves”, Regul. Chaotic Dyn., 13:6 (2008), 645–668 | DOI | MR
[24] H. R. Dullin, M. Juhnke, P. H. Richter, “Action integrals and energy surfaces of the Kovalevskaya top”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4:6 (1994), 1535–1562 | DOI | MR | Zbl
[25] H. Waalkens, H. R. Dullin, P. H. Richter, “The problem of two fixed centers: bifurcations, actions, monodromy”, Phys. D, 196:3–4 (2004), 265–310 | DOI | MR | Zbl
[26] E. Sinitsyn, B. Zhilinskii, “Qualitative analysis of the classical and quantum Manakov top”, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 046, 23 pp., arXiv: math-ph/0703045 | DOI | MR | Zbl
[27] J. J. Duistermaat, “On global action-angle coordinates”, Comm. Pure Appl. Math., 33:6 (1980), 687–706 | DOI | MR | Zbl
[28] L. H. Eliasson, “Normal forms for Hamiltonian systems with Poisson commuting integrals – elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35 | DOI | MR | Zbl
[29] L. M. Lerman, Ya. L. Umanskii, “Klassifikatsiya chetyrekhmernykh integriruemykh gamiltonovykh sistem i puassonovskikh deistvii $\mathbb R^2$ v rasshirennykh okrestnostyakh prostykh osobykh tochek. I”, Matem. sb., 183:12 (1992), 141–176 ; L. M. Lerman, Ya. L. Umanskii, “Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of $\mathbb R^2$ in extended neighborhoods of simple singular points. I”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 511–542 ; “II”, МатРμРј. СЃР±., 184:4 (1993), 105–138 ; “II”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 479–506 ; “III. Р Рμализация”, МатРμРј. СЃР±., 186:10 (1995), 89–102 ; “III. Realization”, Sb. Math., 186:10 (1995), 1477–1491 | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI
[30] R. H. Cushman, L. M. Bates, Global aspects of classical integrable systems, Birkhäuser, Basel, 1997, 435 pp. | MR | Zbl
[31] T. Delzant, “Hamiltoniens périodiques et images covexes de l'application moment”, Bull. Soc. Math. France, 116:3 (1988), 315–339 | MR | Zbl
[32] N. T. Zung, “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compos. Math., 101:2 (1996), 179–215 | MR | Zbl
[33] N. T. Zung, “Symplectic topology of integrable hamiltonian systems. II: Topological classification”, Compos. Math., 138:2 (2003), 125–156 | DOI | MR | Zbl
[34] I. A. Taimanov, “Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds”, Math. USSR-Izv., 30:2 (1988), 403–409 | DOI | MR | Zbl
[35] I. A. Taimanov, “O topologicheskikh svoistvakh integriruemykh geodezicheskikh potokov”, Matem. zametki, 44:2 (1988), 283–284 | MR | Zbl
[36] S. V. Bolotin, “Nonintegrability of the problem of $n$ centers for $n>2$”, Mosc. Univ. Mech. Bull., 39:3 (1984), 65–68 | MR | Zbl
[37] S. V. Bolotin, “First integrals of systems with gyroscopic forces”, Mosc. Univ. Mech. Bull., 39:6 (1984), 20–28 | MR | Zbl
[38] A. V. Bolsinov, I. A. Taimanov, “Integrable geodesic flows with positive topological entropy”, Invent. Math., 140:3 (2000), 639–650 | DOI | MR | Zbl
[39] G. P. Paternain, “On the topology of manifolds with completely integrable geodesic flows”, Ergodic Theory Dynam. Systems, 12:1 (1992), 109–121 | DOI | MR | Zbl
[40] L. T. Butler, “Invariant fibrations of geodesic flows”, Topology, 44:4 (2005), 769–789 | DOI | MR | Zbl
[41] L. T. Butler, “The Maslov cocycle, smooth structures and real-analytic complete integrability”, Amer. J. Math., 131:5 (2009), 1311–1336, arXiv: 0708.3157v2 | DOI | MR | Zbl
[42] B. S. Bardin, “K zadache ob ustoichivosti mayatnikoobraznykh dvizhenii tverdogo tela v sluchae Goryacheva–Chaplygina”, Izv. RAN. MTT, 2007, no. 2, 14–21
[43] A. Z. Bryum, “Orbital stability analysis using first integrals”, J. Appl. Math. Mech., 53:6 (1989), 689–695 | DOI | MR | Zbl
[44] A. V. Karapetyan, “Invariant sets in the Goryachev–Chaplygin problem: existence, stability and branching”, J. Appl. Math. Mech., 70:2 (2006), 195–198 | DOI | MR | Zbl
[45] A. V. Karapetyan, “Invariant sets in the Clebsch–Tisserand problem: Existence and stability”, J. Appl. Math. Mech., 70:6 (2006), 859–864 | DOI | MR | Zbl
[46] A. P. Markeyev, “The stability of the plane motions of a rigid body in the Kovalevskaya case”, J. Appl. Math. Mech., 65:1 (2001), 47–54 | DOI | MR | Zbl
[47] A. P. Markeev, S. V. Medvedev, T. N. Chekhovskaya, “K zadache ob ustoichivosti mayatnikovykh dvizhenii tverdogo tela v sluchae Kovalevskoi”, Izv. RAN. MTT, 2003, no. 1, 3–9
[48] A. P. Markeyev, “The pendulum-like motions of a rigid body in the Goryachev–Chaplygin case”, J. Appl. Math. Mech., 68:2 (2004), 249–258 | DOI | MR | Zbl
[49] A. Yu. Moskvin, “Shar Chaplygina s girostatom: osobye resheniya”, Nelineinaya dinamika, 5:3 (2009), 345–356 http://nd.ics.org.ru/doc/r/pdf/1547/0
[50] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Mathematical aspects of classical and celestial mechanics. Dynamical systems, III”, Encyclopaedia Math. Sci., 3, Springer, Berlin, 1993, vii–xiv+129 pp. | MR | MR | Zbl | Zbl
[51] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, 2-e izd., NITs “RKhD”, Izhevsk, 2005, 576 pp. | MR | Zbl
[52] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR | Zbl
[53] A. V. Borisov, I. S. Mamaev, “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR
[54] K. Ehlers, J. Koiller, J. Montgomery, P. Rios, “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization”, The breadth of symplectic and Poisson geometry, Progr. Math., 232, eds. J. E. Marsden, T. S. Ratiu, Birkhäuser, Boston, MA, 2005, 75–120 | MR | Zbl
[55] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 147–183 | MR | Zbl
[56] E. Miranda, N. T. Zung, “Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian system”, Ann. Sci. École Norm. Sup. (4), 37:6 (2004), 819–839 | DOI | MR | Zbl
[57] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR | MR | Zbl
[58] H. R. Dullin, A. V. Ivanov, “Vanishing twist in the Hamiltonian Hopf bifurcation”, Phys. D, 201:1–2 (2005), 27–44 | DOI | MR | Zbl
[59] V. V. Kalashnikov, “Typical integrable Hamiltonian systems on a four-dimensional symplectic manifold”, Izv. Math., 62:2 (1998), 261–285 | DOI | MR | Zbl
[60] S. A. Chaplygin, “Novoe chastnoe reshenie zadachi o vraschenii tyazhelogo tverdogo tela vokrug nepodvizhnoi tochki”, Trudy otd. fiz. nauk obsch-va lyubitelei estestvoznaniya, antropologii i etnografii, 12:1 (1904), 1–4; РЎРѕР±СЂ. СЃРѕС‡., С‚. 1, Р“Р�РўРўР›, Рњ., Р›., 1948, 125–132 | MR
[61] V. V. Kozlov, Metody kachestvennogo analiza v dinamike tverdogo tela, 2-e izd., Izd-vo RKhD, Izhevsk, 2000, 248 pp. | MR | Zbl
[62] A. V. Tsiganov, “Separation of variables in the Kovalevskaya–Goryachev–Chaplygin gyrostat”, Theoret. Math. Phys., 135:2 (2003), 651–658 | DOI | MR
[63] A. V. Borisov, A. G. Kholmskaya, I. S. Mamaev, “S. V. Kovalevskaya top and generalizations of integrable systems”, Regul. Chaotic Dyn., 6:1 (2001), 1–16 | DOI | MR | Zbl
[64] A. V. Borisov, I. S. Mamaev, “Euler–Poisson equations and integrable cases”, Regul. Chaotic Dyn., 6:3 (2001), 253–276 | DOI | MR | Zbl
[65] A. Chenciner, R. Montgomery, “A remarkable periodic solution of the three-body problem in the case of equal masses”, Ann. of Math. (2), 152:3 (2000), 881–901, arXiv: math/0011268 | DOI | MR | Zbl
[66] A. Chenciner, J. Gerver, R. Montgomery, C. Simo, “Simple choreographies of $N$ bodies: a preliminary study”, Geometry, mechanics, and dynamics, eds. P. Newton, P. Holmes, A. Weinstein, Springer, New York, 2002, 287–308 | DOI | MR | Zbl
[67] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Absolute and relative choreographies in rigid body dynamics”, Regul. Chaotic Dyn., 13:3 (2008), 204–220 | DOI | MR
[68] Sistema Klebsha. Razdelenie peremennykh, yavnoe integrirovanie?, eds. A. V. Borisov, A. V. Tsyganov, NITs “RKhD”, M., Izhevsk, 2009, 287 pp.
[69] F. Kötter, “Ueber die Bewegung eines festen Körpers in einer Flüssigkeit. I, II”, J. Reine Angew. Math., 109 (1892), 51–81 ; 89–111 | Zbl | Zbl
[70] V. G. Marikhin, V. V. Sokolov, “O privedenii pary kvadratichnykh po impulsam gamiltonianov k kanonicheskoi forme i o veschestvennom chastichnom razdelenii peremennykh dlya volchka Klebsha”, Nelineinaya dinamika, 4:3 (2008), 313–322 http://nd.ics.org.ru/doc/r/pdf/1316/0
[71] V. A. Steklov, “Odin sluchai dvizheniya tyazhelogo tverdogo tela v zhidkosti”, Trudy otd. fiz. nauk obsch-va lyubitelei estestvoznaniya, antropologii i etnografii, 7 (1895), 1–40
[72] G. Kolossoff, “On some cases of motion of a solid in infinite liquid”, Amer. J. Math., 28:4 (1906), 367–376 | DOI | MR | Zbl
[73] B. Gaffet, “Expanding gas clouds of ellipsoidal shape: new exact solutions”, J. Fluid Mech., 325 (1996), 113–144 | DOI | MR | Zbl
[74] B. Gaffet, “Spinning gas clouds – without vorticity”, J. Phys. A, 33:21 (2000), 3929–3946 | DOI | MR | Zbl
[75] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Multiparticle systems. The algebra of integrals and integrable cases”, Regul. Chaotic Dyn., 14:1 (2009), 18–41 | DOI | MR
[76] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Lax representation with a spectral parameter for the Kovalevskaya top and its generalizations”, Funct. Anal. Appl., 22:2 (1988), 158–160 | DOI | MR
[77] O. I. Bogoyavlenskii, “Integrable Euler equations on Lie algebras arising in problems of mathematical physics”, Math. USSR-Izv., 25:2 (1985), 207–257 | DOI | MR | Zbl
[78] O. I. Bogoyavlenskii, Oprokidyvayuschiesya solitony. Nelineinye integriruemye uravneniya, Nauka, M., 1991, 320 pp. | MR | Zbl
[79] V. M. Alekseev, “Obobschennaya prostranstvennaya zadacha dvukh nepodvizhnykh tsentrov. Klassifikatsiya dvizhenii”, Byull. In-ta teoret. astronomii, 10:4(117) (1965), 241–271 | MR
[80] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Lie algebras in vortex dynamics and celestial mechanics – IV”, Regul. Chaotic Dyn., 4:1 (1999), 23–50 | DOI | MR | Zbl
[81] A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Motion of a circular cylinder and $n$ point vortices in a perfect fluid”, Regul. Chaotic Dyn., 8:4 (2003), 449–462 | DOI | MR | Zbl
[82] A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Dynamic interaction of point vortices and a two-dimensional cylinder”, J. Math. Phys., 48:6 (2007), 065403, 9 pp. | DOI | MR | Zbl