Topology and stability of integrable systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 259-318
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper a general topological approach is proposed for the study of stability of periodic solutions of integrable dynamical systems with two degrees of freedom. The methods developed are illustrated by examples of several integrable problems related to the classical Euler–Poisson equations, the motion of a rigid body in a fluid, and the dynamics of gaseous expanding ellipsoids. These topological methods also enable one to find non-degenerate periodic solutions of integrable systems, which is especially topical in those cases where no general solution (for example, by separation of variables) is known.
Bibliography: 82 titles.
Keywords:
topology, stability, periodic trajectory, critical set, bifurcation diagram.
Mots-clés : bifurcation set
Mots-clés : bifurcation set
@article{RM_2010_65_2_a1,
author = {A. V. Bolsinov and A. V. Borisov and I. S. Mamaev},
title = {Topology and stability of integrable systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {259--318},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_2_a1/}
}
TY - JOUR AU - A. V. Bolsinov AU - A. V. Borisov AU - I. S. Mamaev TI - Topology and stability of integrable systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 259 EP - 318 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2010_65_2_a1/ LA - en ID - RM_2010_65_2_a1 ER -
A. V. Bolsinov; A. V. Borisov; I. S. Mamaev. Topology and stability of integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 259-318. http://geodesic.mathdoc.fr/item/RM_2010_65_2_a1/