Mots-clés : multipliers
@article{RM_2010_65_2_a0,
author = {S. V. Bolotin and D. V. Treschev},
title = {Hill's formula},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {191--257},
year = {2010},
volume = {65},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_2_a0/}
}
S. V. Bolotin; D. V. Treschev. Hill's formula. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 191-257. http://geodesic.mathdoc.fr/item/RM_2010_65_2_a0/
[1] G. W. Hill, “On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon”, Acta Math., 8:1 (1886), 1–36 | DOI | MR | Zbl
[2] A. Poincaré, Les méthodes nouvelles de la mécanique céleste, v. I, Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques, Gauthier-Villars, Paris, 1892, 385 pp. ; v. II, Méthodes de MM. Newcomb, Gyldén, Lindstedt et Bohlin, 1893, viii+479 pp. ; v. III, Invariants intégraux. Solutions périodiques du deuxième genre. Solutions doublement asymptotiques, 1899, iv+414 pp. ; Reprint, Les Grands Classiques Gauthier-Villars, Librairie Scientifique et Technique Albert Blanchard, Paris, 1987, Vol. I, xii+387 pp. ; Vol. II, viii+487 pp. ; Vol. III, vi+416 pp. | Zbl | Zbl | Zbl | MR | Zbl | MR | MR
[3] R. S. MacKay, J. D. Meiss, “Linear stability of periodic orbits in Lagrangian systems”, Phys. Lett. A, 98:3 (1983), 92–94 | DOI | MR
[4] D. V. Treshchev, “On the problem of the stability of the periodic trajectories of a Birkhoff billiard”, Mosc. Univ. Mech. Bull., 43:2 (1988), 28–36 | MR | Zbl
[5] S. V. Bolotin, “The Hill determinant of a periodic orbit”, Mosc. Univ. Mech. Bull., 43:3 (1988), 7–11 | MR | Zbl
[6] V. V. Kozlov, D. V. Treschev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl
[7] Ch. Liu, Y. Long, “Iterated index formulae for closed geodesics with applications”, Sci. China Ser. A, 45:1 (2002), 9–28 | MR | Zbl
[8] Y. Long, Index theory for symplectic paths with applications, Progr. Math., 207, Birkhäuser, Basel, 2002, xxiv+380 pp. | MR | Zbl
[9] V. V. Kozlov, “On the mechanism of the stability loss”, Differ. Equ., 45:4 (2009), 510–519 | DOI | Zbl
[10] V. V. Kozlov, “Spektralnye svoistva operatorov s polinomialnymi invariantami v veschestvennykh konechnomernykh prostranstvakh”, Tr. MIAN, 268, 2010 (to appear)
[11] X. Hu, Sh. Sun, “Index and stability of symmetric periodic orbits in Hamiltonian systems with applications to figure-eight orbit”, Comm. Math. Phys., 290:2 (2009), 737–777 | DOI | MR | Zbl
[12] X. Hu, Sh. Sun, “Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem”, Adv. Math., 223:1 (2010), 98–119 | DOI | Zbl
[13] A. Chenciner, R. Montgomery, “A remarkable periodic solution of the three-body problem in the case of equal masses”, Ann. of Math. (2), 152:3 (2000), 881–901, arXiv: math/0011268 | DOI | MR | Zbl
[14] D. L. Ferrario, S. Terracini, “On the existence of collisionless equivariant minimizers for the classical $n$-body problem”, Invent. Math., 155:2 (2004), 305–362 | DOI | MR | Zbl
[15] S. Terracini, A. Venturelli, “Symmetric trajectories for the $2N$-body problem with equal masses”, Arch. Ration. Mech. Anal., 184:3 (2007), 465–493 | DOI | MR | Zbl
[16] H. R. Dullin, J. D. Meiss, “Stability of minimal periodic orbits”, Phys. Lett. A, 247:3 (1998), 227–234 | DOI | MR | Zbl
[17] V. V. Kozlov, “Zadacha ob ustoichivosti dvukhzvennykh traektorii mnogomernogo billiarda Birkgofa”, Tr. MIAN, 273 (to appear)
[18] A. P. Veselov, “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl
[19] M. Bialy, “Maximizing orbits for higher-dimensional convex billiards”, J. Mod. Dyn., 3:1 (2009), 51–59 | DOI | MR | Zbl
[20] C. Golé, Symplectic twist maps. Global variational techniques, Adv. Ser. Nonlinear Dynam., 18, World Scientific, Singapore, 2001, xviii+304 pp. | MR | Zbl
[21] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., Providence, RI, 1966, xii+305 pp. | MR | Zbl
[22] Ya. G. Sinai, “Dynamical systems with elastic reflections”, Russian Math. Surveys, 25:2 (1970), 137–189 | DOI | MR | Zbl
[23] S. Aubry, G. Abramovici, “Chaotic trajectories in the standard map: the concept of anti-integrability”, Phys. D, 43:2-3 (1990), 199–219 | DOI | MR | Zbl
[24] R. S. MacKay, J. D. Meiss, “Cantori for symplectic maps near the anti-integrable limit”, Nonlinearity, 5:1 (1992), 149–160 | DOI | MR | Zbl
[25] D. Treschev, O. Zubelevich, Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer, Berlin, 2010, x+211 pp. | DOI | MR | Zbl
[26] S. Bolotin, R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015–1029 | DOI | MR | Zbl
[27] W. Klingenberg, Lectures on closed geodesics, Grundlehren Math. Wiss., 230, Springer-Verlag, Berlin–New York, 1978, x+227 pp. | MR | MR | Zbl | Zbl
[28] R. Bott, “On the iteration of closed geodesics and Sturm intersection theory”, Comm. Pure. Appl. Math., 9:2 (1956), 171–206 | DOI | MR | Zbl
[29] D. Treschëv, “O svyazi indeksa Morsa zamknutoi geodezicheskoi s ee ustoichivostyu”, Trudy sem. vektor. tenzor. anal., 23, 1988, 175–189 ; Р§.2: ТрансцРμРЅРґРμнтныРμ функции, 1963, 515 СЃ. | MR | Zbl
[30] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl
[31] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Associated Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl
[32] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Dynamical systems, III, Encyclopaedia Math. Sci., 3, Springer, Berlin, 1993, xiv+291 pp. | MR | MR | Zbl | Zbl
[33] W. Gordon, “On the relation between period and energy in periodic dynamical systems”, J. Math. Mech., 19 (1969/1970), 111–114 | MR | Zbl
[34] A. Weinstein, “Bifurcations and Hamilton's principle”, Math. Z., 159:3 (1978), 235–248 | DOI | MR | Zbl