Hill's formula
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 191-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In his study of periodic orbits of the three-body problem, Hill obtained a formula connecting the characteristic polynomial of the monodromy matrix of a periodic orbit with the infinite determinant of the Hessian of the action functional. A mathematically rigorous definition of the Hill determinant and a proof of Hill's formula were obtained later by Poincaré. Here two multidimensional generalizations of Hill's formula are given: for discrete Lagrangian systems (symplectic twist maps) and for continuous Lagrangian systems. Additional aspects appearing in the presence of symmetries or reversibility are discussed. Also studied is the change of the Morse index of a periodic trajectory upon reduction of order in a system with symmetries. Applications are given to the problem of stability of periodic orbits. Bibliography: 34 titles.
Keywords: periodic solution, stability, Lagrangian system, billiard system.
Mots-clés : multipliers
@article{RM_2010_65_2_a0,
     author = {S. V. Bolotin and D. V. Treschev},
     title = {Hill's formula},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {191--257},
     year = {2010},
     volume = {65},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_2_a0/}
}
TY  - JOUR
AU  - S. V. Bolotin
AU  - D. V. Treschev
TI  - Hill's formula
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 191
EP  - 257
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_2_a0/
LA  - en
ID  - RM_2010_65_2_a0
ER  - 
%0 Journal Article
%A S. V. Bolotin
%A D. V. Treschev
%T Hill's formula
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 191-257
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2010_65_2_a0/
%G en
%F RM_2010_65_2_a0
S. V. Bolotin; D. V. Treschev. Hill's formula. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 2, pp. 191-257. http://geodesic.mathdoc.fr/item/RM_2010_65_2_a0/

[1] G. W. Hill, “On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon”, Acta Math., 8:1 (1886), 1–36 | DOI | MR | Zbl

[2] A. Poincaré, Les méthodes nouvelles de la mécanique céleste, v. I, Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques, Gauthier-Villars, Paris, 1892, 385 pp. ; v. II, Méthodes de MM. Newcomb, Gyldén, Lindstedt et Bohlin, 1893, viii+479 pp. ; v. III, Invariants intégraux. Solutions périodiques du deuxième genre. Solutions doublement asymptotiques, 1899, iv+414 pp. ; Reprint, Les Grands Classiques Gauthier-Villars, Librairie Scientifique et Technique Albert Blanchard, Paris, 1987, Vol. I, xii+387 pp. ; Vol. II, viii+487 pp. ; Vol. III, vi+416 pp. | Zbl | Zbl | Zbl | MR | Zbl | MR | MR

[3] R. S. MacKay, J. D. Meiss, “Linear stability of periodic orbits in Lagrangian systems”, Phys. Lett. A, 98:3 (1983), 92–94 | DOI | MR

[4] D. V. Treshchev, “On the problem of the stability of the periodic trajectories of a Birkhoff billiard”, Mosc. Univ. Mech. Bull., 43:2 (1988), 28–36 | MR | Zbl

[5] S. V. Bolotin, “The Hill determinant of a periodic orbit”, Mosc. Univ. Mech. Bull., 43:3 (1988), 7–11 | MR | Zbl

[6] V. V. Kozlov, D. V. Treschev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl

[7] Ch. Liu, Y. Long, “Iterated index formulae for closed geodesics with applications”, Sci. China Ser. A, 45:1 (2002), 9–28 | MR | Zbl

[8] Y. Long, Index theory for symplectic paths with applications, Progr. Math., 207, Birkhäuser, Basel, 2002, xxiv+380 pp. | MR | Zbl

[9] V. V. Kozlov, “On the mechanism of the stability loss”, Differ. Equ., 45:4 (2009), 510–519 | DOI | Zbl

[10] V. V. Kozlov, “Spektralnye svoistva operatorov s polinomialnymi invariantami v veschestvennykh konechnomernykh prostranstvakh”, Tr. MIAN, 268, 2010 (to appear)

[11] X. Hu, Sh. Sun, “Index and stability of symmetric periodic orbits in Hamiltonian systems with applications to figure-eight orbit”, Comm. Math. Phys., 290:2 (2009), 737–777 | DOI | MR | Zbl

[12] X. Hu, Sh. Sun, “Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem”, Adv. Math., 223:1 (2010), 98–119 | DOI | Zbl

[13] A. Chenciner, R. Montgomery, “A remarkable periodic solution of the three-body problem in the case of equal masses”, Ann. of Math. (2), 152:3 (2000), 881–901, arXiv: math/0011268 | DOI | MR | Zbl

[14] D. L. Ferrario, S. Terracini, “On the existence of collisionless equivariant minimizers for the classical $n$-body problem”, Invent. Math., 155:2 (2004), 305–362 | DOI | MR | Zbl

[15] S. Terracini, A. Venturelli, “Symmetric trajectories for the $2N$-body problem with equal masses”, Arch. Ration. Mech. Anal., 184:3 (2007), 465–493 | DOI | MR | Zbl

[16] H. R. Dullin, J. D. Meiss, “Stability of minimal periodic orbits”, Phys. Lett. A, 247:3 (1998), 227–234 | DOI | MR | Zbl

[17] V. V. Kozlov, “Zadacha ob ustoichivosti dvukhzvennykh traektorii mnogomernogo billiarda Birkgofa”, Tr. MIAN, 273 (to appear)

[18] A. P. Veselov, “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl

[19] M. Bialy, “Maximizing orbits for higher-dimensional convex billiards”, J. Mod. Dyn., 3:1 (2009), 51–59 | DOI | MR | Zbl

[20] C. Golé, Symplectic twist maps. Global variational techniques, Adv. Ser. Nonlinear Dynam., 18, World Scientific, Singapore, 2001, xviii+304 pp. | MR | Zbl

[21] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., Providence, RI, 1966, xii+305 pp. | MR | Zbl

[22] Ya. G. Sinai, “Dynamical systems with elastic reflections”, Russian Math. Surveys, 25:2 (1970), 137–189 | DOI | MR | Zbl

[23] S. Aubry, G. Abramovici, “Chaotic trajectories in the standard map: the concept of anti-integrability”, Phys. D, 43:2-3 (1990), 199–219 | DOI | MR | Zbl

[24] R. S. MacKay, J. D. Meiss, “Cantori for symplectic maps near the anti-integrable limit”, Nonlinearity, 5:1 (1992), 149–160 | DOI | MR | Zbl

[25] D. Treschev, O. Zubelevich, Introduction to the perturbation theory of Hamiltonian systems, Springer Monogr. Math., Springer, Berlin, 2010, x+211 pp. | DOI | MR | Zbl

[26] S. Bolotin, R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015–1029 | DOI | MR | Zbl

[27] W. Klingenberg, Lectures on closed geodesics, Grundlehren Math. Wiss., 230, Springer-Verlag, Berlin–New York, 1978, x+227 pp. | MR | MR | Zbl | Zbl

[28] R. Bott, “On the iteration of closed geodesics and Sturm intersection theory”, Comm. Pure. Appl. Math., 9:2 (1956), 171–206 | DOI | MR | Zbl

[29] D. Treschëv, “O svyazi indeksa Morsa zamknutoi geodezicheskoi s ee ustoichivostyu”, Trudy sem. vektor. tenzor. anal., 23, 1988, 175–189 ; Р§.2: ТрансцРμРЅРґРμнтныРμ функции, 1963, 515 СЃ. | MR | Zbl

[30] E. T. Whittaker, G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR | Zbl

[31] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Associated Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl

[32] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Dynamical systems, III, Encyclopaedia Math. Sci., 3, Springer, Berlin, 1993, xiv+291 pp. | MR | MR | Zbl | Zbl

[33] W. Gordon, “On the relation between period and energy in periodic dynamical systems”, J. Math. Mech., 19 (1969/1970), 111–114 | MR | Zbl

[34] A. Weinstein, “Bifurcations and Hamilton's principle”, Math. Z., 159:3 (1978), 235–248 | DOI | MR | Zbl