Mots-clés : Sigma invariants
@article{RM_2010_65_1_a2,
author = {M. Farber and R. Geoghegan and D. Sch\"utz},
title = {Closed 1-forms in topology and geometric group theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {143--172},
year = {2010},
volume = {65},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_1_a2/}
}
TY - JOUR AU - M. Farber AU - R. Geoghegan AU - D. Schütz TI - Closed 1-forms in topology and geometric group theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 143 EP - 172 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2010_65_1_a2/ LA - en ID - RM_2010_65_1_a2 ER -
M. Farber; R. Geoghegan; D. Schütz. Closed 1-forms in topology and geometric group theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 143-172. http://geodesic.mathdoc.fr/item/RM_2010_65_1_a2/
[1] S. P. Novikov, “Multivalued functions and functionals. An analogue of the Morse theory”, Soviet Math. Dokl., 24 (1981), 222–226 | MR | Zbl
[2] S. P. Novikov, “The Hamiltonian formalism and a multi-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl
[3] S. P. Novikov, “Bloch homology. Critical points of functions and closed 1-forms”, Soviet Math. Dokl., 33 (1986), 551–555 | MR | Zbl
[4] S. P. Novikov, I. Shmeltser, “Periodicheskie resheniya uravnenii Kirkhgofa dlya svobodnogo dvizheniya tverdogo tela v zhidkosti i rasshirennaya teoriya Lyusternika–Shnirelmana–Morsa (LShM). I”, Funkts. analiz i ego pril., 15:3 (1981), 54–66 | MR | Zbl
[5] M. Farber, Topology of closed one-forms, Math. Surveys Monogr., 108, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[6] B. Farber, D. Schutz, “Closed 1-forms in topology and dynamics”, Russian Math. Surveys, 63:6 (2008), 1079–1139 | DOI | MR | Zbl
[7] J.-Cl. Sikorav, Points fixes de difféomorphismes symplectiques, intersections de sous-variétés lagrangiennes, et singularités de un-formes fermées, Thèse de Doctorat d'Etat ès Sciences Mathématiques, Université Paris-Sud, Centre d'Orsay, 1987
[8] R. Bieri, W. D. Neumann, R. Strebel, “A geometric invariant of discrete groups”, Invent. Math., 90:3 (1987), 451–477 | DOI | MR | Zbl
[9] R. Bieri, B. Renz, “Valuations on free resolutions and higher geometric invariants of groups”, Comment. Math. Helv., 63:3 (1988), 464–497 | DOI | MR | Zbl
[10] M. Farber, “Zeros of closed 1-forms, homoclinic orbits and Lusternik–Schnirelman theory”, Topol. Methods Nonlinear Anal., 19:1 (2002), 123–152 | MR | Zbl
[11] F. Latour, “Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham”, Publ. Math. Inst. Hautes Ètudes Sci., 80 (1994), 135–194 | DOI | MR | Zbl
[12] M. Farber, “Lusternik–Schnirelman theory and dynamics”, Lusternik–Schnirelmann category and related topics (South Hadley, MA, 2001), Contemp. Math., 316, Amer. Math. Soc., Providence, RI, 2002, 95–111 | MR | Zbl
[13] M. Farber, T. Kappeler, “Lusternik–Schnirelman theory and dynamics. II”, Proc. Steklov Inst. Math., 2004, no. 4, 232–245 | MR | Zbl
[14] M. Bestvina, N. Brady, “Morse theory and finiteness properties of groups”, Invent. Math., 129:3 (1997), 445–470 | DOI | MR | Zbl
[15] K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer, New York–Berlin, 1982 | MR | Zbl
[16] R. Geoghegan, Topological methods in group theory, Grad. Texts in Math., 243, Springer, New York, 2008 | DOI | MR | Zbl
[17] J. Meier, H. Meinert, L. van Wyk, “Higher generation subgroup sets and the $\Sigma$-invariants of graph groups”, Comment. Math. Helv., 73:1 (1998), 22–44 | DOI | MR | Zbl
[18] R. Bieri, R. Geoghegan, D. Kochloukova, The Sigma invariants of Thompson's group $F$, , 2008 arXiv: 0807.5138
[19] R. Bieri, “Finiteness length and connectivity length for groups”, Geometric group theory down under (Canberra, 1996), de Gruyter, Berlin, 1999, 9–22 | MR | Zbl
[20] R. Bieri, R. Geoghegan, Connectivity properties of group actions on non-positively curved spaces, Mem. Amer. Math. Soc., 161, no. 765, 2003 | MR | Zbl
[21] J. Harlander, D. Kochloukova, “The $\Sigma^3$-conjecture for metabelian groups”, J. London Math. Soc. (2), 67:3 (2003), 609–625 | DOI | MR | Zbl
[22] M. Farber, D. Schütz, “Moving homology classes to infinity”, Forum Math., 19:2 (2007), 281–296 | DOI | MR | Zbl
[23] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966 | MR | MR | Zbl | Zbl
[24] D. Schütz, “Finite domination, Novikov homology and nonsingular closed $1$-forms”, Math. Z., 252:3 (2006), 623–654 | DOI | MR | Zbl
[25] C. T. C. Wall, “Finiteness conditions for CW-complexes”, Ann. of Math. (2), 81:1 (1965), 56–69 | DOI | MR | Zbl
[26] C. T. C. Wall, “Finiteness conditions for CW-complexes. II”, Proc. Roy. Soc. Ser. A, 295:1441 (1966), 129–139 | DOI | MR | Zbl
[27] A. Ranicki, “The algebraic theory of finiteness obstruction”, Math. Scand., 57:1 (1985), 105–126 | MR | Zbl
[28] M. Farber, D. Schütz, “Homological category weights and estimates for $\mathrm{cat}^1(X,\xi)$”, J. Eur. Math. Soc. (JEMS), 10:1 (2008), 243–266 | DOI | MR | Zbl
[29] M. Usher, Spectral numbers in Floer theories, \adsnasas{http://adsabs.harvard.edu/cgi-bin/bib_query?2007arXiv0709.1127U}, 2007 arXiv: 0709.1127
[30] M. Farber, D. Schütz, “Cohomological estimates for $\operatorname{cat}(X,\xi)$”, Geom. Topol., 11 (2007), 1255–1288 | DOI | MR | Zbl
[31] K. S. Brown, “Homological criteria for finiteness”, Comment. Math. Helv., 50:1 (1975), 129–135 | DOI | MR | Zbl
[32] K. S. Brown, “Finiteness properties of groups”, Proceedings of the Northwestern conference on cohomology of groups (Evanston, IL, 1985), J. Pure Appl. Algebra, 44:1–3 (1987), 45–75 | DOI | MR | Zbl