Closed 1-forms in topology and geometric group theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 143-172
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we describe relations of the topology of closed 1-forms to the group-theoretic invariants of Bieri–Neumann–Strebel–Renz. Starting with a survey, we extend these Sigma invariants to finite CW-complexes and show that many properties of the group-theoretic version have analogous statements. In particular, we show the relation between Sigma invariants and finiteness properties of certain infinite covering spaces. We also discuss applications of these invariants to the Lusternik–Schnirelmann category of a closed 1-form and to the existence of a non-singular closed 1-form in a given cohomology class on a high-dimensional closed manifold. Bibliography: 32 titles.
Keywords: Lusternik–Schnirelmann category, Novikov ring, movability of homology classes.
Mots-clés : Sigma invariants
@article{RM_2010_65_1_a2,
     author = {M. Farber and R. Geoghegan and D. Sch\"utz},
     title = {Closed 1-forms in topology and geometric group theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {143--172},
     year = {2010},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_1_a2/}
}
TY  - JOUR
AU  - M. Farber
AU  - R. Geoghegan
AU  - D. Schütz
TI  - Closed 1-forms in topology and geometric group theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 143
EP  - 172
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_1_a2/
LA  - en
ID  - RM_2010_65_1_a2
ER  - 
%0 Journal Article
%A M. Farber
%A R. Geoghegan
%A D. Schütz
%T Closed 1-forms in topology and geometric group theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 143-172
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2010_65_1_a2/
%G en
%F RM_2010_65_1_a2
M. Farber; R. Geoghegan; D. Schütz. Closed 1-forms in topology and geometric group theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 143-172. http://geodesic.mathdoc.fr/item/RM_2010_65_1_a2/

[1] S. P. Novikov, “Multivalued functions and functionals. An analogue of the Morse theory”, Soviet Math. Dokl., 24 (1981), 222–226 | MR | Zbl

[2] S. P. Novikov, “The Hamiltonian formalism and a multi-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl

[3] S. P. Novikov, “Bloch homology. Critical points of functions and closed 1-forms”, Soviet Math. Dokl., 33 (1986), 551–555 | MR | Zbl

[4] S. P. Novikov, I. Shmeltser, “Periodicheskie resheniya uravnenii Kirkhgofa dlya svobodnogo dvizheniya tverdogo tela v zhidkosti i rasshirennaya teoriya Lyusternika–Shnirelmana–Morsa (LShM). I”, Funkts. analiz i ego pril., 15:3 (1981), 54–66 | MR | Zbl

[5] M. Farber, Topology of closed one-forms, Math. Surveys Monogr., 108, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[6] B. Farber, D. Schutz, “Closed 1-forms in topology and dynamics”, Russian Math. Surveys, 63:6 (2008), 1079–1139 | DOI | MR | Zbl

[7] J.-Cl. Sikorav, Points fixes de difféomorphismes symplectiques, intersections de sous-variétés lagrangiennes, et singularités de un-formes fermées, Thèse de Doctorat d'Etat ès Sciences Mathématiques, Université Paris-Sud, Centre d'Orsay, 1987

[8] R. Bieri, W. D. Neumann, R. Strebel, “A geometric invariant of discrete groups”, Invent. Math., 90:3 (1987), 451–477 | DOI | MR | Zbl

[9] R. Bieri, B. Renz, “Valuations on free resolutions and higher geometric invariants of groups”, Comment. Math. Helv., 63:3 (1988), 464–497 | DOI | MR | Zbl

[10] M. Farber, “Zeros of closed 1-forms, homoclinic orbits and Lusternik–Schnirelman theory”, Topol. Methods Nonlinear Anal., 19:1 (2002), 123–152 | MR | Zbl

[11] F. Latour, “Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham”, Publ. Math. Inst. Hautes Ètudes Sci., 80 (1994), 135–194 | DOI | MR | Zbl

[12] M. Farber, “Lusternik–Schnirelman theory and dynamics”, Lusternik–Schnirelmann category and related topics (South Hadley, MA, 2001), Contemp. Math., 316, Amer. Math. Soc., Providence, RI, 2002, 95–111 | MR | Zbl

[13] M. Farber, T. Kappeler, “Lusternik–Schnirelman theory and dynamics. II”, Proc. Steklov Inst. Math., 2004, no. 4, 232–245 | MR | Zbl

[14] M. Bestvina, N. Brady, “Morse theory and finiteness properties of groups”, Invent. Math., 129:3 (1997), 445–470 | DOI | MR | Zbl

[15] K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer, New York–Berlin, 1982 | MR | Zbl

[16] R. Geoghegan, Topological methods in group theory, Grad. Texts in Math., 243, Springer, New York, 2008 | DOI | MR | Zbl

[17] J. Meier, H. Meinert, L. van Wyk, “Higher generation subgroup sets and the $\Sigma$-invariants of graph groups”, Comment. Math. Helv., 73:1 (1998), 22–44 | DOI | MR | Zbl

[18] R. Bieri, R. Geoghegan, D. Kochloukova, The Sigma invariants of Thompson's group $F$, , 2008 arXiv: 0807.5138

[19] R. Bieri, “Finiteness length and connectivity length for groups”, Geometric group theory down under (Canberra, 1996), de Gruyter, Berlin, 1999, 9–22 | MR | Zbl

[20] R. Bieri, R. Geoghegan, Connectivity properties of group actions on non-positively curved spaces, Mem. Amer. Math. Soc., 161, no. 765, 2003 | MR | Zbl

[21] J. Harlander, D. Kochloukova, “The $\Sigma^3$-conjecture for metabelian groups”, J. London Math. Soc. (2), 67:3 (2003), 609–625 | DOI | MR | Zbl

[22] M. Farber, D. Schütz, “Moving homology classes to infinity”, Forum Math., 19:2 (2007), 281–296 | DOI | MR | Zbl

[23] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966 | MR | MR | Zbl | Zbl

[24] D. Schütz, “Finite domination, Novikov homology and nonsingular closed $1$-forms”, Math. Z., 252:3 (2006), 623–654 | DOI | MR | Zbl

[25] C. T. C. Wall, “Finiteness conditions for CW-complexes”, Ann. of Math. (2), 81:1 (1965), 56–69 | DOI | MR | Zbl

[26] C. T. C. Wall, “Finiteness conditions for CW-complexes. II”, Proc. Roy. Soc. Ser. A, 295:1441 (1966), 129–139 | DOI | MR | Zbl

[27] A. Ranicki, “The algebraic theory of finiteness obstruction”, Math. Scand., 57:1 (1985), 105–126 | MR | Zbl

[28] M. Farber, D. Schütz, “Homological category weights and estimates for $\mathrm{cat}^1(X,\xi)$”, J. Eur. Math. Soc. (JEMS), 10:1 (2008), 243–266 | DOI | MR | Zbl

[29] M. Usher, Spectral numbers in Floer theories, \adsnasas{http://adsabs.harvard.edu/cgi-bin/bib_query?2007arXiv0709.1127U}, 2007 arXiv: 0709.1127

[30] M. Farber, D. Schütz, “Cohomological estimates for $\operatorname{cat}(X,\xi)$”, Geom. Topol., 11 (2007), 1255–1288 | DOI | MR | Zbl

[31] K. S. Brown, “Homological criteria for finiteness”, Comment. Math. Helv., 50:1 (1975), 129–135 | DOI | MR | Zbl

[32] K. S. Brown, “Finiteness properties of groups”, Proceedings of the Northwestern conference on cohomology of groups (Evanston, IL, 1985), J. Pure Appl. Algebra, 44:1–3 (1987), 45–75 | DOI | MR | Zbl