Mots-clés : Klein–Gordon equation
@article{RM_2010_65_1_a1,
author = {E. A. Kopylova},
title = {Dispersive estimates for the {Schr\"odinger} and {Klein{\textendash}Gordon} equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {95--142},
year = {2010},
volume = {65},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_1_a1/}
}
E. A. Kopylova. Dispersive estimates for the Schrödinger and Klein–Gordon equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 95-142. http://geodesic.mathdoc.fr/item/RM_2010_65_1_a1/
[1] A. Komech, E. Kopylova, “Weighted energy decay for 1D Klein–Gordon equation”, Comm. Partial Differential Equations, 35:2 (2010), 353–374 | DOI
[2] E. A. Kopylova and A. I. Komech, “Long-time decay for 2D Klein-Gordon equation”, J. Funct. Anal., 259:2 (2010), Pages 477–502 | DOI
[3] A. I. Komech, E. A. Kopylova, “Weighted energy decay for 3D Klein–Gordon equation”, J. Differential Equations, 248:3 (2010), 501–520 | DOI | Zbl
[4] S. Agmon, “Spectral properties of Schrödinger operator and scattering theory”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151–218 | MR | Zbl
[5] A. Jensen, T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46:3 (1979), 583–611 | DOI | MR | Zbl
[6] M. Murata, “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal., 49:1 (1982), 10–56 | DOI | MR | Zbl
[7] V. S. Buslaev, G. S. Perelman, “On the stability of solitary waves for nonlinear Schrödinger equations”, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 75–98 | MR | Zbl
[8] R. L. Pego, M. I. Weinstein, “On asymptotic stability of solitary waves”, Phys. Lett. A, 162:3 (1992), 263–268 | DOI
[9] R. L. Pego, M. I. Weinstein, “Asymptotic stability of solitary waves”, Comm. Math. Phys., 164:2 (1994), 305–349 | DOI | MR | Zbl
[10] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys., 133:1 (1990), 119–146 | DOI | MR | Zbl
[11] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II: The case of anisotropic potentials and data”, J. Differential Equations, 98:2 (1992), 376–390 | DOI | MR | Zbl
[12] V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 419–475 | DOI | MR | Zbl
[13] S. Cuccagna, “Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math., 54:9 (2001), 1110–1145 | DOI | MR | Zbl
[14] A. Komech, E. Kopylova, “Scattering of solitons for Schrödinger equation coupled to a particle”, Russ. J. Math. Phys., 13:2 (2006), 158–187 | DOI | MR | Zbl
[15] V. Imaikin, A. Komech, B. Vainberg, “On scattering of solitons for the Klein–Gordon equation coupled to a particle”, Comm. Math. Phys., 268:2 (2006), 321–367 | DOI | MR | Zbl
[16] A. Soffer, M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74 | DOI | MR | Zbl
[17] A. Komech, E. Kopylova, On asymptotic stability of kink for relativistic Ginzburg–Landau equation, , 2009 arXiv: abs/0910.5539
[18] A. Komech, E. Kopylova, On asymptotic stability of moving kink for relativistic Ginzburg–Landau equation, , 2009 arXiv: abs/0910.5538
[19] C. S. Morawetz, W. A. Strauss, “Decay and scattering of solutions of a nonlinear relativistic wave equation”, Comm. Pure Appl. Math., 25:1 (1972), 1–31 | DOI | MR | Zbl
[20] B. R. Vainberg, Asymptotic methods in equations of mathematical physics, Gordon Breach, New York, 1989 | MR | MR | Zbl | Zbl
[21] B. R. Vainberg, “On short-wave asymptotic behaviour of solutions of steady-state problems and the asymptotic behaviour as $t\to\infty$ of solutions of time-dependent problems”, Russian Math. Surveys, 30:2 (1975), 1–58 | DOI | MR | Zbl
[22] B. R. Vainberg, “Behaviour for large time of solutions of the Klein–Gordon equation”, Trans. Mosc. Math. Soc., 30 (1976), 139–158 | MR | Zbl
[23] P. Brenner, “On the existence of global smooth solutions of certain semi-linear hyperbolic equations”, Math. Z., 167:2 (1979), 99–135 | DOI | MR | Zbl
[24] P. Brenner, “On scattering and everywhere defined scattering operators for nonlinear Klein–Gordon equations”, J. Differential Equations, 56:3 (1985), 310–344 | DOI | MR | Zbl
[25] J.-M. Delort, “Existence globale et comportement asymptotique pour l'équation de Klein–Gordon quasi linéaire à données petites en dimension 1”, Ann. Sci. École Norm. Sup. (4), 34:1 (2001), 1–61 | DOI | MR | Zbl
[26] S. Klainerman, “Remark on the asymptotic behavior of the Klein–Gordon equation in $\mathbb R^{n+1}$”, Comm. Pure Appl. Math., 46:2 (1993), 137–144 | DOI | MR | Zbl
[27] B. Marshall, W. Strauss, S. Wainger, “$L^p-L^q$ estimates for the Klein–Gordon equation”, J. Math. Pures Appl. (9), 59:4 (1980), 417–440 | MR | Zbl
[28] R. A. Weder, “The $L^p-L^{p'}$ estimate for the Schrödinger equation on the half-line”, J. Math. Anal. Appl., 281:1 (2003), 233–243 | DOI | MR | Zbl
[29] K. Yajima, “The $W^{k,p}$-continuity of wave operators for Schrödinger operators”, J. Math. Soc. Japan, 47:3 (1995), 551–581 | DOI | MR | Zbl
[30] A. Jensen, “Spectral properties of Schrödinger operators and time-decay of the wave function. Results in $L^2(\mathbb R^m)$, $m\ge5$”, Duke Math. J., 47:1 (1980), 57–80 | DOI | MR | Zbl
[31] A. Jensen, “Spectral properties of Schrödinger operators and time-decay of the wave function. Results in $L^2(\mathbb R^4)$”, J. Math. Anal. Appl., 101:2 (1984), 397–422 | DOI | MR | Zbl
[32] A. Jensen, G. Nenciu, “A unified approach to resolvent expansions at thresholds”, Rev. Math. Phys., 13:6 (2001), 717–754 | DOI | MR | Zbl
[33] P. D'Ancona, V. Georgiev, H. Kubo, “Weighted decay estimates for the wave equation”, J. Differential Equations, 177:1 (2001), 146–208 | DOI | MR | Zbl
[34] H. Kubo, S. Lucente, “Note on weighted Strichartz estimates for Klein–Gordon equations with potential”, Tsukuba J. Math., 31:1 (2007), 143–173 | MR | Zbl
[35] A. F. Nikiforov, V. B. Uvarov, Special functions of mathematical physics, Birkhäuser, Basel, 1988 | MR | MR | Zbl | Zbl
[36] M. Reed, B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York–London, 1978 | MR | MR | Zbl | Zbl
[37] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer, Berlin, 1987 | MR | MR | Zbl | Zbl
[38] L.-E. Lundberg, “Spectral and scattering theory for the Klein–Gordon equation”, Comm. Math. Phys., 31:3 (1973), 243–257 | DOI | MR | Zbl
[39] M. Schechter, “The Klein–Gordon equation and scattering theory”, Ann. Physics, 101:2 (1976), 601–609 | DOI | MR | Zbl
[40] R. A. Weder, “Scattering theory for the Klein–Gordon equation”, J. Funct. Anal., 27:1 (1978), 100–117 | DOI | MR | Zbl