Dispersive estimates for the Schrödinger and Klein–Gordon equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 95-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of results on the long-time asymptotic behaviour of solutions of the Schrödinger and Klein–Gordon equations in weighted energy norms. Results obtained from 1975 to 2001 in the spectral scattering theory of Agmon, Jensen–Kato, Jensen–Nenciu, and Murata are described for the Schrödinger equation, along with the author's recent results [1]–[3] obtained jointly with A. I. Komech for the Klein–Gordon equation. The methods used develop the spectral approach as applied to relativistic equations. Bibliography: 40 titles.
Keywords: Schrödinger equation, Cauchy problem, long-time asymptotic behaviour, weighted spaces.
Mots-clés : Klein–Gordon equation
@article{RM_2010_65_1_a1,
     author = {E. A. Kopylova},
     title = {Dispersive estimates for the {Schr\"odinger} and {Klein{\textendash}Gordon} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {95--142},
     year = {2010},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_1_a1/}
}
TY  - JOUR
AU  - E. A. Kopylova
TI  - Dispersive estimates for the Schrödinger and Klein–Gordon equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 95
EP  - 142
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_1_a1/
LA  - en
ID  - RM_2010_65_1_a1
ER  - 
%0 Journal Article
%A E. A. Kopylova
%T Dispersive estimates for the Schrödinger and Klein–Gordon equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 95-142
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2010_65_1_a1/
%G en
%F RM_2010_65_1_a1
E. A. Kopylova. Dispersive estimates for the Schrödinger and Klein–Gordon equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 95-142. http://geodesic.mathdoc.fr/item/RM_2010_65_1_a1/

[1] A. Komech, E. Kopylova, “Weighted energy decay for 1D Klein–Gordon equation”, Comm. Partial Differential Equations, 35:2 (2010), 353–374 | DOI

[2] E. A. Kopylova and A. I. Komech, “Long-time decay for 2D Klein-Gordon equation”, J. Funct. Anal., 259:2 (2010), Pages 477–502 | DOI

[3] A. I. Komech, E. A. Kopylova, “Weighted energy decay for 3D Klein–Gordon equation”, J. Differential Equations, 248:3 (2010), 501–520 | DOI | Zbl

[4] S. Agmon, “Spectral properties of Schrödinger operator and scattering theory”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151–218 | MR | Zbl

[5] A. Jensen, T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46:3 (1979), 583–611 | DOI | MR | Zbl

[6] M. Murata, “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal., 49:1 (1982), 10–56 | DOI | MR | Zbl

[7] V. S. Buslaev, G. S. Perelman, “On the stability of solitary waves for nonlinear Schrödinger equations”, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 75–98 | MR | Zbl

[8] R. L. Pego, M. I. Weinstein, “On asymptotic stability of solitary waves”, Phys. Lett. A, 162:3 (1992), 263–268 | DOI

[9] R. L. Pego, M. I. Weinstein, “Asymptotic stability of solitary waves”, Comm. Math. Phys., 164:2 (1994), 305–349 | DOI | MR | Zbl

[10] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys., 133:1 (1990), 119–146 | DOI | MR | Zbl

[11] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II: The case of anisotropic potentials and data”, J. Differential Equations, 98:2 (1992), 376–390 | DOI | MR | Zbl

[12] V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 419–475 | DOI | MR | Zbl

[13] S. Cuccagna, “Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math., 54:9 (2001), 1110–1145 | DOI | MR | Zbl

[14] A. Komech, E. Kopylova, “Scattering of solitons for Schrödinger equation coupled to a particle”, Russ. J. Math. Phys., 13:2 (2006), 158–187 | DOI | MR | Zbl

[15] V. Imaikin, A. Komech, B. Vainberg, “On scattering of solitons for the Klein–Gordon equation coupled to a particle”, Comm. Math. Phys., 268:2 (2006), 321–367 | DOI | MR | Zbl

[16] A. Soffer, M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74 | DOI | MR | Zbl

[17] A. Komech, E. Kopylova, On asymptotic stability of kink for relativistic Ginzburg–Landau equation, , 2009 arXiv: abs/0910.5539

[18] A. Komech, E. Kopylova, On asymptotic stability of moving kink for relativistic Ginzburg–Landau equation, , 2009 arXiv: abs/0910.5538

[19] C. S. Morawetz, W. A. Strauss, “Decay and scattering of solutions of a nonlinear relativistic wave equation”, Comm. Pure Appl. Math., 25:1 (1972), 1–31 | DOI | MR | Zbl

[20] B. R. Vainberg, Asymptotic methods in equations of mathematical physics, Gordon Breach, New York, 1989 | MR | MR | Zbl | Zbl

[21] B. R. Vainberg, “On short-wave asymptotic behaviour of solutions of steady-state problems and the asymptotic behaviour as $t\to\infty$ of solutions of time-dependent problems”, Russian Math. Surveys, 30:2 (1975), 1–58 | DOI | MR | Zbl

[22] B. R. Vainberg, “Behaviour for large time of solutions of the Klein–Gordon equation”, Trans. Mosc. Math. Soc., 30 (1976), 139–158 | MR | Zbl

[23] P. Brenner, “On the existence of global smooth solutions of certain semi-linear hyperbolic equations”, Math. Z., 167:2 (1979), 99–135 | DOI | MR | Zbl

[24] P. Brenner, “On scattering and everywhere defined scattering operators for nonlinear Klein–Gordon equations”, J. Differential Equations, 56:3 (1985), 310–344 | DOI | MR | Zbl

[25] J.-M. Delort, “Existence globale et comportement asymptotique pour l'équation de Klein–Gordon quasi linéaire à données petites en dimension 1”, Ann. Sci. École Norm. Sup. (4), 34:1 (2001), 1–61 | DOI | MR | Zbl

[26] S. Klainerman, “Remark on the asymptotic behavior of the Klein–Gordon equation in $\mathbb R^{n+1}$”, Comm. Pure Appl. Math., 46:2 (1993), 137–144 | DOI | MR | Zbl

[27] B. Marshall, W. Strauss, S. Wainger, “$L^p-L^q$ estimates for the Klein–Gordon equation”, J. Math. Pures Appl. (9), 59:4 (1980), 417–440 | MR | Zbl

[28] R. A. Weder, “The $L^p-L^{p'}$ estimate for the Schrödinger equation on the half-line”, J. Math. Anal. Appl., 281:1 (2003), 233–243 | DOI | MR | Zbl

[29] K. Yajima, “The $W^{k,p}$-continuity of wave operators for Schrödinger operators”, J. Math. Soc. Japan, 47:3 (1995), 551–581 | DOI | MR | Zbl

[30] A. Jensen, “Spectral properties of Schrödinger operators and time-decay of the wave function. Results in $L^2(\mathbb R^m)$, $m\ge5$”, Duke Math. J., 47:1 (1980), 57–80 | DOI | MR | Zbl

[31] A. Jensen, “Spectral properties of Schrödinger operators and time-decay of the wave function. Results in $L^2(\mathbb R^4)$”, J. Math. Anal. Appl., 101:2 (1984), 397–422 | DOI | MR | Zbl

[32] A. Jensen, G. Nenciu, “A unified approach to resolvent expansions at thresholds”, Rev. Math. Phys., 13:6 (2001), 717–754 | DOI | MR | Zbl

[33] P. D'Ancona, V. Georgiev, H. Kubo, “Weighted decay estimates for the wave equation”, J. Differential Equations, 177:1 (2001), 146–208 | DOI | MR | Zbl

[34] H. Kubo, S. Lucente, “Note on weighted Strichartz estimates for Klein–Gordon equations with potential”, Tsukuba J. Math., 31:1 (2007), 143–173 | MR | Zbl

[35] A. F. Nikiforov, V. B. Uvarov, Special functions of mathematical physics, Birkhäuser, Basel, 1988 | MR | MR | Zbl | Zbl

[36] M. Reed, B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York–London, 1978 | MR | MR | Zbl | Zbl

[37] M. A. Shubin, Pseudodifferential operators and spectral theory, Springer, Berlin, 1987 | MR | MR | Zbl | Zbl

[38] L.-E. Lundberg, “Spectral and scattering theory for the Klein–Gordon equation”, Comm. Math. Phys., 31:3 (1973), 243–257 | DOI | MR | Zbl

[39] M. Schechter, “The Klein–Gordon equation and scattering theory”, Ann. Physics, 101:2 (1976), 601–609 | DOI | MR | Zbl

[40] R. A. Weder, “Scattering theory for the Klein–Gordon equation”, J. Funct. Anal., 27:1 (1978), 100–117 | DOI | MR | Zbl