@article{RM_2010_65_1_a0,
author = {A. S. Demidov},
title = {Functional geometric method for solving free boundary problems for harmonic functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--94},
year = {2010},
volume = {65},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/}
}
TY - JOUR AU - A. S. Demidov TI - Functional geometric method for solving free boundary problems for harmonic functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 1 EP - 94 VL - 65 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/ LA - en ID - RM_2010_65_1_a0 ER -
A. S. Demidov. Functional geometric method for solving free boundary problems for harmonic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 1-94. http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/
[1] H. Helmholtz, “Über discontinuirliche Flüssigkeitsbewegungen”, Monatsberichte der Königlich Preußischen Academie der Wissenschaften zu Berlin, 1868, 215–228 ; G. Gelmgolts, Dva issledovaniya po gidrodinamike. I: O vikhrevom dvizhenii. II: O preryvnom dvizhenii zhidkosti, $\Pi$A$\Lambda\Lambda$A$\Sigma$, M., 1902 | Zbl
[2] A. S. Demidov, “The form of a steady plasma subject to the skin effect in a Tokamak with non-circular cross-section”, Nuclear Fusion, 15 (1975), 765–768
[3] A. S. Demidov, “Ob odnoi zadache so svobodnoi granitsei v teorii ravnovesnoi plazmy”, Tr. sem. im. I. G. Petrovskogo, 4, 1978, 65–82 | MR | Zbl
[4] A. S. Demidov, “Configurations du plasma stationnaire équilibré”, Free boundary problems, vol. I (Pavia, 1979), Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, 467–485 | MR | Zbl
[5] A. S. Demidov, “On the inverse problem for the Grad–Shafranov equation with affine right-hand side”, Russian Math. Surveys, 55:6 (2000), 1141–1142 | DOI | MR | Zbl
[6] A. S. Demidov, “On the inverse problem for the Grad–Shafranov equation with affine right-hand side”, Russ. J. Math. Phys., 17:2 (2010) (to appear)
[7] A. S. Demidov, M. Moussaoui, “An inverse problem originating from magnetohydrodynamics”, Inverse Problems, 20:1 (2004), 137–154 | DOI | MR | Zbl
[8] A. S. Demidov and V. V. Savel'ev, “Essentially different distributions of current in the inverse problem for the Grad–Shafranov equation”, Russ. J. Math. Phys., 17:1 (2010), 56–65 | DOI
[9] M. Vogelius, “An inverse problem for the equation $\Delta u=-cu-d$”, Ann. Inst. Fourier (Grenoble), 44:4 (1994), 1181–1209 | MR | Zbl
[10] V. D. Shafranov, “On equilibrium magnetohydrodynamic configurations”, Terzo Congresso Internazionale sui Fenomeni d'Ionizzazione nei Gas (Venezia, 1957), Milano, 1957, 990–997
[11] G. G. Stokes, “Mathematical proof of the identity of the stream lines obtained by means of a viscous film with those of a perfect fluid moving in two dimensions”, Brit. Ass. Rep., 1898, 143–144 | Zbl
[12] L. S. Leibenzon, Neftepromyslovaya mekhanika, ch. II, Nefteizdat, M., 1934
[13] H. S. Hele-Shaw, “The flow of water”, Nature, 58 (1897), 467–468 | Zbl
[14] P. Ya. Kochina, A. R. Shkirich, “K voprosu o peremeschenii kontura neftenosnosti (eksperiment)”, Izv. AN SSSR, otd. tekhnich. nauk, 1954, no. 11, 105–107
[15] P. G. Saffman, G. I. Taylor, “The penetration of a fluid into a porous medium of Hele–Shaw cell containing a more viscous liquid”, Proc. Roy. Soc. London. Ser. A, 245:1242 (1958), 312–329 | DOI | MR | Zbl
[16] A. N. Gorban', A. M. Gorlov, V. M. Silantyev, “Limits of the turbine efficiency for free fluid flow”, J. Energy Resources Technology, 123:4 (2001), 311–317 | DOI | MR
[17] A. Gorban', M. Braverman, V. Silantyev, “Modified Kirchhoff flow with a partially penetrable obstacle and its application to the efficiency of free flow turbines”, Math. Comput. Modelling, 35:13 (2002), 1371–1375 | DOI | MR | Zbl
[18] A. M. Gorlov, “Helical turbine for the Gulf Stream”, Marine Technology, 35:3 (1998), 175–182 | MR
[19] D. V. Maklakov, Nelineinye zadachi gidrodinamiki potentsialnykh techenii s neizvestnymi granitsami, Yanus-K, M., 1997 | Zbl
[20] A. S. Demidov, L. E. Zakharov, “Pryamaya i obratnaya zadachi v teorii ravnovesiya plazmy”, UMN, 29:6 (1974), 203 | MR
[21] J. Blum, H. Buvat, “An inverse problem in plasma physics: the identification of the current density profile in a tokamak”, Large-scale optimization with applications, Part I (Minneapolis, MN, 1995), IMA Vol. Math. Appl., 92, Springer, New York, 1997, 17–36 | MR | Zbl
[22] V. D. Pustovitov, “Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems”, Nuclear Fusion, 41:6 (2001), 721–730 | DOI
[23] L. E. Zakharov, J. Lewandowski, L. E. Foley, F. M. Levinton, H. Y. Yuh, V. Drozdov, D. C. McDonald, “The theory of variances in equilibrium reconstruction”, Physics of Plasma, 15:9 (2008), 092503 | DOI
[24] J. Mossino, “A priori estimates for a model of Grad–Mercier type in plasma confinement”, Applicable Anal., 13:3 (1982), 185–207 | DOI | MR | Zbl
[25] J. Mossino, “Isoperimetric inequalities and nonexistence resultat for the Grad–Shafranov equations”, Nonlinear Anal., 11:2 (1987), 231–244 | DOI | MR | Zbl
[26] A. Friedman, Variational principles and free-boundary problems, Pure Appl. Math., Wiley, New York, 1982 | MR | MR | Zbl | Zbl
[27] H. Berestycki, H. Brezis, “Sur certains problèmes de frontière libre”, C. R. Acad. Sci. Paris Sér. A-B, 283:16 (1976), 1091–1094 | MR | Zbl
[28] H. Berestycki, H. Brezis, “On a free boundary problem arising in plasma physics”, Nonlinear Anal., 4:3 (1980), 415–436 | DOI | MR | Zbl
[29] R. Temam, “A non-linear eigenvalue problem: The shape at equilibrium of a confined plasma”, Arch. Ration. Mech. Anal., 60:1 (1975), 51–73 | DOI | MR | Zbl
[30] R. Temam, “Remarks on a free boundary problem arising in plasma physics”, Comm. Partial Differential Equations, 2:6 (1977), 563–585 | DOI | MR | Zbl
[31] L. A. Caffarelli, G. Spruck, “Convexity properties of solutions of some classical variational problems”, Comm. Partial Differential Equations, 7:11 (1982), 1337–1379 | DOI | MR | Zbl
[32] D. Kinderlehrer, L. Nirenberg, “Regularity in free boundary problems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4:2 (1977), 373–391 | MR | Zbl
[33] D. Kinderlehrer, J. Spruck, “The shape and smoothness of stable plasma configurations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:1 (1978), 131–148 | MR | Zbl
[34] I. I. Danilyuk, Ob integralnykh funktsionalakh s peremennoi oblastyu integrirovaniya, Tr. MIAN, 118, Nauka, M., 1972 | MR | Zbl
[35] P. N. Vabischevich, L. M. Dektyarev, Yu. Yu. Poshekhonov, Chislennoe reshenie pryamoi i obratnoi zadachi MGD-ravnovesiya s poverkhnostnym tokom, Preprint No 9 IPM im. M. V. Keldysha, M., 1979
[36] A. Acker, “On the qualitative theory of parametrized families of free boundaries”, J. Reine Angew. Math., 393 (1989), 134–169 | MR | Zbl
[37] A. Beurling, “On free-boundary problems for the Laplace equation”, Semin. on Analytic Functions, N.Y. Inst. Adv. Study, V.I, 1957, 248–263
[38] Y. Suzuki, H. Yamada, N. Nakajima, K. Watanabe, Y. Nakamura, T. Hayashi, “Theoretical considerations of doublet-like configuration in LHD”, Nuclear Fusion, 46:1 (2006), 123–132 | DOI
[39] A. S. Demidov, “Sur la perturbation ‘singulière’ dans un problème à frontière libre”, Singular perturbations and boundary layer theory (Lyon, 1976), Lecture Notes in Math., 594, Springer, Berlin, 1977, 123–130 | MR | Zbl
[40] M. B. Gavrikov, V. V. Savelyev, “Equilibrium configurations of plasma in the approximation of two-fluid magnetohydrodynamics with electron inertia taken into account”, J. Math. Sci. (New York), 163:1 (2009), 1–40 | DOI | Zbl
[41] H. Helmholtz, Wissenschaftliche abhandlungen, J. A. Barth, Leipzig, 1895 | Zbl
[42] A. G. Stoletov, Obschedostupnye lektsii i rechi, M., 1902
[43] G. Kirchhoff, “Zur Theorie freier Flüssigkeitsstrahlen”, J. Reine Angew. Math. Grell. Berlin, 70 (1869), 289–298 ; G. R. Kirkhgof, Mekhanika. Lektsii po matematicheskoi fizike, Izd-vo AN SSSR, M., 1962 | DOI | Zbl
[44] A. S. Demidov, “Equilibrium form of a steady plasma”, Phys. Fluids, 21 (1978), 902–904 | DOI | Zbl
[45] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966 | MR | Zbl
[46] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, 4-e izd., Nauka, M., 1973 ; 3-Рμ РёР·Рґ., 1965 | MR | Zbl | MR
[47] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974 ; I. P. Natanson, Theory of functions of a real variable, Frederick Ungar, New York, 1955 ; Vol. II, 1961 | MR | MR | Zbl | MR | Zbl
[48] A. Badzhadi, A. S. Demidov, “Existence, nonexistence and regularity theorems in a problem with a free boundary”, Math. USSR-Sb., 50:1 (1985), 67–84 | DOI | MR | Zbl
[49] N. E. Zhukovskii, “Vidoizmѣnenie metoda Kirkhgoffa dlya opredѣleniya dvizheniya zhidkosti v' dvukh' izmѣreniyakh' pri postoyannoi skorosti, dannoi na neizvѣstnoi linii toka”, Matem. sb., 15:1 (1890), 121–278 ; РЎРѕР±СЂ. СЃРѕС‡., Рў. II, Р“Р�РўРўР›, Рњ.–Р›., 1949 | MR | Zbl
[50] V. N. Monakhov, Boundary value problems with free boundaries for elliptic systems of equations, Transl. Math. Monogr., 57, Amer. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl
[51] L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute of Mathematical Sciences, New York University, New York, 1974 | MR | MR | Zbl | Zbl
[52] J. Leray, J. Schauder, “Topologie et équations fonctionnelles”, Ann. Sci. École Norm. Sup. (3), 51 (1934), 45–78 ; Zh. Lerei, Yu. Shauder, “Topologiya i funktsionalnye uravneniya”, UMN, 1:3-4 (1946), 71–95 | MR | MR | Zbl
[53] H. Cartan, Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes, Enseignement des Sciences, Hermann, Paris, 1961 | MR | MR | Zbl | Zbl
[54] Yong Liu, “The equilibrium plasma subject to skin effect”, SIAM J. Math. Anal., 26:5 (1995), 1157–1183 | DOI | MR | Zbl
[55] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, 2-e izd., Udmurd. gos. un-t, Izhevsk, 2000
[56] A. S. Demidov, “A complete asymptotics of the solution of the Dirichlet problem for a two-dimensional Laplace equation with rapidly oscillating boundary data”, Dokl. Math., 53:1 (1996), 81–83 | MR | Zbl
[57] A. S. Demidov, V. V. Petrova, V. M. Silantiev, “On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak”, C. R. Acad. Sci. Paris Sér. I Math., 323:4 (1996), 353–358 | MR | Zbl
[58] A. S. Demidov and A. A. Platushchikhin, “Explicit formula for the gradient of a harmonic function from its analytic Cauchy data on the analytic curve”, Math. Notes, 87:1 (2010), 135–137 | DOI
[59] A. S. Demidov, A. S. Kochurov, A. Yu. Popov, “To the problem of the recovery of non-linearities in equations of mathematical physics”, J. Math. Sci., 163:1 (2009), 46–77 | DOI | Zbl
[60] A. D. Valiev, A. S. Demidov, “Nonnegative trigonometric polynomials with fixed mean passing through given points”, Math. Notes, 62:3 (1997), 390–392 | DOI | MR | Zbl
[61] L. A. Galin, “Neustanovivshayasya filtratsiya so svobodnoi poverkhnostyu”, Dokl. AN SSSR, 47:4 (1945), 246–249 | MR | Zbl
[62] P. Ya. Polubarinova-Kochina, “K voprosu o peremeschenii kontura neftenosnosti”, Dokl. AN SSSR, 47:4 (1945), 254–257
[63] P. Ya. Polubarinova-Kochina, “O neustanovivshikhsya dvizheniyakh v teorii filtratsii: O peremeschenii kontura neftenosnosti”, PMM, 9:1 (1945), 79–90 | Zbl
[64] P. P. Kufarev, “Reshenie zadachi o konture neftenosnosti dlya kruga”, Dokl. AN SSSR, 60:8 (1948), 1333–1334 | MR
[65] Yu. P. Vinogradov, P. P. Kufarev, “Ob odnoi zadache filtratsii”, PMM, 12:2 (1948), 181–198 | MR | Zbl
[66] J. R. Ockendon, S. D. Howison, “Kochina and Hele-Shaw in modern mathematics, natural science and industry”, J. Appl. Math. Mech., 66:3 (2002), 505–512 | DOI | MR | Zbl
[67] P. Ya. Kochina, Izbrannye trudy. Gidrodinamika i teoriya filtratsii, Nauka, M., 1991 | MR | Zbl
[68] B. Gustafsson, “Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows”, SIAM J. Math. Anal., 16:2 (1985), 279–300 | DOI | MR | Zbl
[69] B. Gustafsson, A. Vasil'ev, Conformal and potential analysis in Hele-Shaw cells, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2006 | MR | Zbl
[70] Hele-Shaw flows and related problems: Papers from the conference held in Oxford (1998), European J. Appl. Math., 10, no. 6, eds. S. D. Howison, J. R. Ockendon, Cambridge Univ. Press, New York, 1999 | MR
[71] A. M. Meirmanov, B. Zaltzman, “Global in time solution to the Hele-Shaw problem with a change of topology”, European J. Appl. Math., 13:4 (2002), 431–447 | DOI | MR | Zbl
[72] L. N. Aleksandrov, Kinetika kristallizatsii i perekristallizatsii poluprovodnikovykh plenok, Nauka, Novosibirsk, 1985
[73] E. N. Kablov, Litye lopatki gazoturbinnykh dvigatelei, MISIS, M., 2001
[74] B. G. Thomas, Ch. Beckermann (Eds.), Modeling of casting, welding advanced solidification processes (San Diego, CA, 1998), Minerals, Metals Materials Society, Warrendale, PA, 1998
[75] P. I. Plotnikov, V. N. Starovoitov, “The Stefan problem with surface tension as a limit of the phase field model”, Differential Equations, 29:3 (1993), 395–404 | MR | Zbl
[76] G. Caginalp, “Stefan and Hele-Shaw type problems as asymptotics limits of the phase-field equations”, Phys. Rev. A (3), 39:11 (1989), 5887–5896 | DOI | MR | Zbl
[77] G. Caginalp, X. Chen, “Convergence of the phase field model to its sharp interface limits”, European J. Appl. Math., 9:4 (1998), 417–445 | DOI | MR | Zbl
[78] V. G. Danilov, G. A. Omel'yanov, E. V. Radkevich, “Asymptotic behavior of the solution of a phase field system, and a modified Stefan problem”, Differential Equations, 31:3 (1995), 446–454 | MR | Zbl
[79] J. Escher, G. Simonett, “Classical solutions of multidimensional Hele–Shaw models”, SIAM J. Math. Anal., 28:5 (1997), 1028–1047 | DOI | MR | Zbl
[80] G. Prokert, “On evalution equations for moving domains”, Z. Anal. Anwend., 18:1 (1999), 67–95 | MR | Zbl
[81] A. S. Demidov, “Evolution of the perturbation of a circle in the Stokes–Leibenson problem for the Hele-Shaw flow”, J. Math. Sci. (N. Y.), 123:5 (2004), 4381–4403 | DOI | MR | Zbl
[82] A. S. Demidov, “Evolution of the perturbation of a circle in the Stokes–Leibenson problem for the Hele-Shaw flow. Part II”, J. Math. Sci. (N. Y.), 139:6 (2006), 7064–7078 | DOI | MR | Zbl
[83] A. S. Demidov, “On the evolution of a weak perturbation of a circle in the problem of a Hele-Shaw flow”, Russian Math. Surveys, 57:6 (2002), 1212–1214 | DOI | MR | Zbl
[84] A. Antontsev, A. M. Meirmanov, V. Yurinsky, Hele-Shaw flow in two dimensions: Global-in-time classical solutions, Preprint No 6, Universidade da Beira Interior, Portugal, 1999
[85] S. Richardson, “Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel”, J. Fluid Mech., 56:4 (1972), 609–618 | DOI | Zbl
[86] A. S. Demidov, J.-P. Lohéac, A quasi-contour model of Stokes–Leibenson problem for Hele-Shaw flows, CNRS UMR 5585 preprint 328, 2001 | MR
[87] A. S. Demidov, J.-P. Lohéac, “On the evolution near some attractive manifold in a problem for the Hele-Shaw flows”, Matematicheskie idei P. L. Chebyshëva i ikh prilozhenie k sovremennym problemam estestvoznaniya (Obninsk, 2002), Obninskii in-t atomnoi energetiki, Obninsk, 2002, 37–38 | MR | Zbl
[88] A. S. Demidov, J.-P. Lohéac, “The Stokes–Leibenson problem for Hele-Shaw flows”, Patterns and waves (St. Petersburg, 2002), eds. A. Abramian, S. Vaculenko, V. Volpert, AkademPrint, St. Petersburg, 2003, 103–124 | MR | Zbl
[89] O. A. Vasileva, A. S. Demidov, “Konechnotochechnaya model zadachi Stoksa–Leibenzona dlya Khil-Shou techeniya”, Fundam. i prikl. matem., 5:1 (1999), 67–84 | MR | Zbl
[90] A. S. Demidov, “A polygonal model for Hele-Shaw flow”, Russian Math. Surveys, 53:4 (1998), 846 | DOI | MR
[91] A. S. Demidov, “On the minimum of continuous functionals of derivatives for a harmonic function parametrized by its desired level line and/or other boundary data”, J. Math. Sci. (N. Y.), 139:6 (2006), 7047–7063 | DOI | MR | Zbl
[92] L. Föppl, “Wirbelbewegung hinter einem Kreiszylinder”, Sitzb. Bayr. Akad. Wiss., 1913, 1–17 | Zbl
[93] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, 2-e izd., Nauka, M., 1977 | MR
[94] A. S. Demidov, “Reduction of a nonstationary Euler hydrodynamic equation to a system of ordinary differential equations in the plane problem of cavitational flow with boundary control”, Math. Notes, 86:1–2 (2009), 41–52 | DOI | Zbl
[95] V. I. Vlasov, “Variatsiya konformnogo otobrazheniya pri singulyarnom deformirovanii oblasti i ee prilozhenie k teorii strui”, Analiticheskie i chislennye metody resheniya zadach matematicheskoi fiziki, Izd-vo VTs AN SSSR, M., 1989, 41–48 | MR | Zbl
[96] A. S. Demidov, A. S. Kochurov, A. Yu. Protasov, “Optimization of the speed of motion for a flow by the Föppl–Lavrent'ev scheme”, Russian J. Math. Phys. (to appear)
[97] G. Birkhoff, E. H. Zarantonello, Jets, wakes, and cavities, Academic Press, New York, 1957 | MR | MR | Zbl | Zbl
[98] F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford–New York–Paris; Addison-Wesley, Reading, MA–London, 1966 | MR | MR | Zbl | Zbl
[99] G. Birkhoff, Hydrodynamics. A study in logic, fact and similitude, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl | Zbl
[100] M. I. Vishik, S. L. Sobolev, “Obschaya postanovka nekotorykh kraevykh zadach dlya ellipticheskikh differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 111:3 (1956), 521–523 | MR | Zbl
[101] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Vol. I, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968 ; Vol. II, Travaux et Recherches Mathématiques, 18, 1968 ; Vol. III, Travaux et Recherches Mathématiques, 20, 1970 ; Dzh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, t. I, Mir, M., 1971 | MR | Zbl | MR | MR | Zbl | Zbl
[102] E. Madzhenes, “Interpolyatsionnye prostranstva i uravneniya v chastnykh proizvodnykh”, UMN, 21:2 (1966), 169–218 | MR
[103] R. Courant, D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience Publishers, New York–London, 1962 | MR | MR | Zbl | Zbl
[104] O. A. Oleinik, R. Temam, G. A. Yosifian, “Some nonlinear homogenization problems”, Appl. Anal., 57:1–2 (1995), 101–118 | DOI | MR | Zbl
[105] R. Aymar, P. Barabaschi, Y. Shimomura, “The ITER design”, Plasma Phys. Control. Fusion, 44 (2002), 519–565 | DOI
[106] T. C. Luce, “Development of steady-state advanced tokamak research in the DIII-D tokamak”, Fusion Science and Technology, 48:2 (2005), 1212–1225
[107] K. V. Brushlinskii, V. V. Savelev, “Magnitnye lovushki dlya uderzhaniya plazmy”, Matem. modelirovanie, 11:5 (1999), 3–36 | MR
[108] O. I. Bogoyavlenskij, “Exact global plasma equilibria”, Russian Math. Surveys, 55:3 (2000), 463–500 | DOI | MR | Zbl
[109] V. L. Polyachenko, A. M. Fridman, Ravnovesie i ustoichivost gravitiruyuschikh sistem, Nauka, M., 1976 | MR | Zbl
[110] V. D. Shafranov, “On magnetohydrodynamical equilibrium configurations”, Soviet Physics JETP, 6 (1958), 545–554 | MR | Zbl
[111] R. Lüst, A. Schlüter, “Axialsymmetrische magnetohydrodynamische gleichgewichtskonfigurationen”, Z. Naturf., 12A (1957), 850 | MR
[112] H. Grad, H. Rubin, “Hydromagnetic equilibria and force-free fields”, Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy (Geneva, 1958), Columbia Univ. Press, New York, 1958
[113] M. I. Gurevich, The theory of jets in an ideal fluid, Internat. Ser. Monogr. Pure Appl. Math., 93, Pergamon Press, Oxford–New York–Toronto, 1966 | MR | Zbl
[114] N. E. Kochin, I. A. Kibel', N. V. Rose, Theoretical hydromechanics, Wiley, New York–London–Sydney, 1964 | MR | Zbl
[115] M. Planck, “Zur Theorie der Flüssigkeitsstrahlen”, Annalen der Physik und Chemie (Wiedemanns Ann.), ser. 2, XXI (1884), 499–509
[116] S. A. Chaplygin, “O nekotorykh sluchayakh dvizheniya tverdogo tela v zhidkosti”, Matem. sb., XX (1897), 114–170, 173–246
[117] T. Levi-Civita, “Scie e leggi di resistenzia”, Rend. Circolo Math. Palermo, 23:1 (1907), 1–37 | DOI | Zbl
[118] A. S. Demidov, “Some applications of the Helmholtz–Kirchhoff method (equilibrium plasma in tokamaks, Hele-Shaw flow, and high-frequency asymptotics)”, Russian J. Math. Phys., 7:2 (2000), 166–186 | MR | Zbl
[119] B. W. Thompson, “Secondary flow in a Hele-Shaw cell”, J. Fluid Mech., 31:2 (1968), 379–395 | DOI | Zbl
[120] J. R. Ockendon, “Linear and nonlinear stability of a class of moving boundary problems”, Free boundary problems, Vol. II (Pavia, 1979), Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, 443–478 | MR | Zbl
[121] A. S. Demidov, J. Mwambakana, I. A. Fedotov, “Schwartz alternating method for elliptic boundary-value problems satisfying the maximum principle”, Math. Notes, 78:3–4 (2005), 577–580 | DOI | MR | Zbl
[122] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, New York; Springer, Berlin, 1965 | MR | MR | Zbl | Zbl
[123] V. I. Arnol'd, “I. G. Petrovskii, Hilbert's topological problems, and modern mathematics”, Russian Math. Surveys, 57:4 (2002), 833–845 | DOI | MR | Zbl
[124] J. Leray, J. L. Lions, “Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty–Browder”, Bull. Soc. Math. France, 93 (1965), 97–107 | MR | Zbl