Functional geometric method for solving free boundary problems for harmonic functions
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 1-94
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A survey is given of results and approaches for a broad spectrum of free boundary problems for harmonic functions of two variables. The main results are obtained by the functional geometric method. The core of these methods is an interrelated analysis of the functional and geometric characteristics of the problems under consideration and of the corresponding non-linear Riemann–Hilbert problems. An extensive list of open questions is presented.
Bibliography: 124 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
free boundaries, harmonic functions.
                    
                    
                    
                  
                
                
                @article{RM_2010_65_1_a0,
     author = {A. S. Demidov},
     title = {Functional geometric method for solving free boundary problems for harmonic functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--94},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/}
}
                      
                      
                    TY - JOUR AU - A. S. Demidov TI - Functional geometric method for solving free boundary problems for harmonic functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 1 EP - 94 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/ LA - en ID - RM_2010_65_1_a0 ER -
A. S. Demidov. Functional geometric method for solving free boundary problems for harmonic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 1-94. http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/
