Functional geometric method for solving free boundary problems for harmonic functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 1-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A survey is given of results and approaches for a broad spectrum of free boundary problems for harmonic functions of two variables. The main results are obtained by the functional geometric method. The core of these methods is an interrelated analysis of the functional and geometric characteristics of the problems under consideration and of the corresponding non-linear Riemann–Hilbert problems. An extensive list of open questions is presented. Bibliography: 124 titles.
Keywords: free boundaries, harmonic functions.
@article{RM_2010_65_1_a0,
     author = {A. S. Demidov},
     title = {Functional geometric method for solving free boundary problems for harmonic functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--94},
     year = {2010},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/}
}
TY  - JOUR
AU  - A. S. Demidov
TI  - Functional geometric method for solving free boundary problems for harmonic functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 1
EP  - 94
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/
LA  - en
ID  - RM_2010_65_1_a0
ER  - 
%0 Journal Article
%A A. S. Demidov
%T Functional geometric method for solving free boundary problems for harmonic functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 1-94
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/
%G en
%F RM_2010_65_1_a0
A. S. Demidov. Functional geometric method for solving free boundary problems for harmonic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 1-94. http://geodesic.mathdoc.fr/item/RM_2010_65_1_a0/

[1] H. Helmholtz, “Über discontinuirliche Flüssigkeitsbewegungen”, Monatsberichte der Königlich Preußischen Academie der Wissenschaften zu Berlin, 1868, 215–228 ; G. Gelmgolts, Dva issledovaniya po gidrodinamike. I: O vikhrevom dvizhenii. II: O preryvnom dvizhenii zhidkosti, $\Pi$A$\Lambda\Lambda$A$\Sigma$, M., 1902 | Zbl

[2] A. S. Demidov, “The form of a steady plasma subject to the skin effect in a Tokamak with non-circular cross-section”, Nuclear Fusion, 15 (1975), 765–768

[3] A. S. Demidov, “Ob odnoi zadache so svobodnoi granitsei v teorii ravnovesnoi plazmy”, Tr. sem. im. I. G. Petrovskogo, 4, 1978, 65–82 | MR | Zbl

[4] A. S. Demidov, “Configurations du plasma stationnaire équilibré”, Free boundary problems, vol. I (Pavia, 1979), Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, 467–485 | MR | Zbl

[5] A. S. Demidov, “On the inverse problem for the Grad–Shafranov equation with affine right-hand side”, Russian Math. Surveys, 55:6 (2000), 1141–1142 | DOI | MR | Zbl

[6] A. S. Demidov, “On the inverse problem for the Grad–Shafranov equation with affine right-hand side”, Russ. J. Math. Phys., 17:2 (2010) (to appear)

[7] A. S. Demidov, M. Moussaoui, “An inverse problem originating from magnetohydrodynamics”, Inverse Problems, 20:1 (2004), 137–154 | DOI | MR | Zbl

[8] A. S. Demidov and V. V. Savel'ev, “Essentially different distributions of current in the inverse problem for the Grad–Shafranov equation”, Russ. J. Math. Phys., 17:1 (2010), 56–65 | DOI

[9] M. Vogelius, “An inverse problem for the equation $\Delta u=-cu-d$”, Ann. Inst. Fourier (Grenoble), 44:4 (1994), 1181–1209 | MR | Zbl

[10] V. D. Shafranov, “On equilibrium magnetohydrodynamic configurations”, Terzo Congresso Internazionale sui Fenomeni d'Ionizzazione nei Gas (Venezia, 1957), Milano, 1957, 990–997

[11] G. G. Stokes, “Mathematical proof of the identity of the stream lines obtained by means of a viscous film with those of a perfect fluid moving in two dimensions”, Brit. Ass. Rep., 1898, 143–144 | Zbl

[12] L. S. Leibenzon, Neftepromyslovaya mekhanika, ch. II, Nefteizdat, M., 1934

[13] H. S. Hele-Shaw, “The flow of water”, Nature, 58 (1897), 467–468 | Zbl

[14] P. Ya. Kochina, A. R. Shkirich, “K voprosu o peremeschenii kontura neftenosnosti (eksperiment)”, Izv. AN SSSR, otd. tekhnich. nauk, 1954, no. 11, 105–107

[15] P. G. Saffman, G. I. Taylor, “The penetration of a fluid into a porous medium of Hele–Shaw cell containing a more viscous liquid”, Proc. Roy. Soc. London. Ser. A, 245:1242 (1958), 312–329 | DOI | MR | Zbl

[16] A. N. Gorban', A. M. Gorlov, V. M. Silantyev, “Limits of the turbine efficiency for free fluid flow”, J. Energy Resources Technology, 123:4 (2001), 311–317 | DOI | MR

[17] A. Gorban', M. Braverman, V. Silantyev, “Modified Kirchhoff flow with a partially penetrable obstacle and its application to the efficiency of free flow turbines”, Math. Comput. Modelling, 35:13 (2002), 1371–1375 | DOI | MR | Zbl

[18] A. M. Gorlov, “Helical turbine for the Gulf Stream”, Marine Technology, 35:3 (1998), 175–182 | MR

[19] D. V. Maklakov, Nelineinye zadachi gidrodinamiki potentsialnykh techenii s neizvestnymi granitsami, Yanus-K, M., 1997 | Zbl

[20] A. S. Demidov, L. E. Zakharov, “Pryamaya i obratnaya zadachi v teorii ravnovesiya plazmy”, UMN, 29:6 (1974), 203 | MR

[21] J. Blum, H. Buvat, “An inverse problem in plasma physics: the identification of the current density profile in a tokamak”, Large-scale optimization with applications, Part I (Minneapolis, MN, 1995), IMA Vol. Math. Appl., 92, Springer, New York, 1997, 17–36 | MR | Zbl

[22] V. D. Pustovitov, “Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems”, Nuclear Fusion, 41:6 (2001), 721–730 | DOI

[23] L. E. Zakharov, J. Lewandowski, L. E. Foley, F. M. Levinton, H. Y. Yuh, V. Drozdov, D. C. McDonald, “The theory of variances in equilibrium reconstruction”, Physics of Plasma, 15:9 (2008), 092503 | DOI

[24] J. Mossino, “A priori estimates for a model of Grad–Mercier type in plasma confinement”, Applicable Anal., 13:3 (1982), 185–207 | DOI | MR | Zbl

[25] J. Mossino, “Isoperimetric inequalities and nonexistence resultat for the Grad–Shafranov equations”, Nonlinear Anal., 11:2 (1987), 231–244 | DOI | MR | Zbl

[26] A. Friedman, Variational principles and free-boundary problems, Pure Appl. Math., Wiley, New York, 1982 | MR | MR | Zbl | Zbl

[27] H. Berestycki, H. Brezis, “Sur certains problèmes de frontière libre”, C. R. Acad. Sci. Paris Sér. A-B, 283:16 (1976), 1091–1094 | MR | Zbl

[28] H. Berestycki, H. Brezis, “On a free boundary problem arising in plasma physics”, Nonlinear Anal., 4:3 (1980), 415–436 | DOI | MR | Zbl

[29] R. Temam, “A non-linear eigenvalue problem: The shape at equilibrium of a confined plasma”, Arch. Ration. Mech. Anal., 60:1 (1975), 51–73 | DOI | MR | Zbl

[30] R. Temam, “Remarks on a free boundary problem arising in plasma physics”, Comm. Partial Differential Equations, 2:6 (1977), 563–585 | DOI | MR | Zbl

[31] L. A. Caffarelli, G. Spruck, “Convexity properties of solutions of some classical variational problems”, Comm. Partial Differential Equations, 7:11 (1982), 1337–1379 | DOI | MR | Zbl

[32] D. Kinderlehrer, L. Nirenberg, “Regularity in free boundary problems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4:2 (1977), 373–391 | MR | Zbl

[33] D. Kinderlehrer, J. Spruck, “The shape and smoothness of stable plasma configurations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:1 (1978), 131–148 | MR | Zbl

[34] I. I. Danilyuk, Ob integralnykh funktsionalakh s peremennoi oblastyu integrirovaniya, Tr. MIAN, 118, Nauka, M., 1972 | MR | Zbl

[35] P. N. Vabischevich, L. M. Dektyarev, Yu. Yu. Poshekhonov, Chislennoe reshenie pryamoi i obratnoi zadachi MGD-ravnovesiya s poverkhnostnym tokom, Preprint No 9 IPM im. M. V. Keldysha, M., 1979

[36] A. Acker, “On the qualitative theory of parametrized families of free boundaries”, J. Reine Angew. Math., 393 (1989), 134–169 | MR | Zbl

[37] A. Beurling, “On free-boundary problems for the Laplace equation”, Semin. on Analytic Functions, N.Y. Inst. Adv. Study, V.I, 1957, 248–263

[38] Y. Suzuki, H. Yamada, N. Nakajima, K. Watanabe, Y. Nakamura, T. Hayashi, “Theoretical considerations of doublet-like configuration in LHD”, Nuclear Fusion, 46:1 (2006), 123–132 | DOI

[39] A. S. Demidov, “Sur la perturbation ‘singulière’ dans un problème à frontière libre”, Singular perturbations and boundary layer theory (Lyon, 1976), Lecture Notes in Math., 594, Springer, Berlin, 1977, 123–130 | MR | Zbl

[40] M. B. Gavrikov, V. V. Savelyev, “Equilibrium configurations of plasma in the approximation of two-fluid magnetohydrodynamics with electron inertia taken into account”, J. Math. Sci. (New York), 163:1 (2009), 1–40 | DOI | Zbl

[41] H. Helmholtz, Wissenschaftliche abhandlungen, J. A. Barth, Leipzig, 1895 | Zbl

[42] A. G. Stoletov, Obschedostupnye lektsii i rechi, M., 1902

[43] G. Kirchhoff, “Zur Theorie freier Flüssigkeitsstrahlen”, J. Reine Angew. Math. Grell. Berlin, 70 (1869), 289–298 ; G. R. Kirkhgof, Mekhanika. Lektsii po matematicheskoi fizike, Izd-vo AN SSSR, M., 1962 | DOI | Zbl

[44] A. S. Demidov, “Equilibrium form of a steady plasma”, Phys. Fluids, 21 (1978), 902–904 | DOI | Zbl

[45] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966 | MR | Zbl

[46] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, 4-e izd., Nauka, M., 1973 ; 3-Рμ РёР·Рґ., 1965 | MR | Zbl | MR

[47] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974 ; I. P. Natanson, Theory of functions of a real variable, Frederick Ungar, New York, 1955 ; Vol. II, 1961 | MR | MR | Zbl | MR | Zbl

[48] A. Badzhadi, A. S. Demidov, “Existence, nonexistence and regularity theorems in a problem with a free boundary”, Math. USSR-Sb., 50:1 (1985), 67–84 | DOI | MR | Zbl

[49] N. E. Zhukovskii, “Vidoizmѣnenie metoda Kirkhgoffa dlya opredѣleniya dvizheniya zhidkosti v' dvukh' izmѣreniyakh' pri postoyannoi skorosti, dannoi na neizvѣstnoi linii toka”, Matem. sb., 15:1 (1890), 121–278 ; РЎРѕР±СЂ. СЃРѕС‡., Рў. II, Р“Р�РўРўР›, Рњ.–Р›., 1949 | MR | Zbl

[50] V. N. Monakhov, Boundary value problems with free boundaries for elliptic systems of equations, Transl. Math. Monogr., 57, Amer. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl

[51] L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute of Mathematical Sciences, New York University, New York, 1974 | MR | MR | Zbl | Zbl

[52] J. Leray, J. Schauder, “Topologie et équations fonctionnelles”, Ann. Sci. École Norm. Sup. (3), 51 (1934), 45–78 ; Zh. Lerei, Yu. Shauder, “Topologiya i funktsionalnye uravneniya”, UMN, 1:3-4 (1946), 71–95 | MR | MR | Zbl

[53] H. Cartan, Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes, Enseignement des Sciences, Hermann, Paris, 1961 | MR | MR | Zbl | Zbl

[54] Yong Liu, “The equilibrium plasma subject to skin effect”, SIAM J. Math. Anal., 26:5 (1995), 1157–1183 | DOI | MR | Zbl

[55] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, 2-e izd., Udmurd. gos. un-t, Izhevsk, 2000

[56] A. S. Demidov, “A complete asymptotics of the solution of the Dirichlet problem for a two-dimensional Laplace equation with rapidly oscillating boundary data”, Dokl. Math., 53:1 (1996), 81–83 | MR | Zbl

[57] A. S. Demidov, V. V. Petrova, V. M. Silantiev, “On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak”, C. R. Acad. Sci. Paris Sér. I Math., 323:4 (1996), 353–358 | MR | Zbl

[58] A. S. Demidov and A. A. Platushchikhin, “Explicit formula for the gradient of a harmonic function from its analytic Cauchy data on the analytic curve”, Math. Notes, 87:1 (2010), 135–137 | DOI

[59] A. S. Demidov, A. S. Kochurov, A. Yu. Popov, “To the problem of the recovery of non-linearities in equations of mathematical physics”, J. Math. Sci., 163:1 (2009), 46–77 | DOI | Zbl

[60] A. D. Valiev, A. S. Demidov, “Nonnegative trigonometric polynomials with fixed mean passing through given points”, Math. Notes, 62:3 (1997), 390–392 | DOI | MR | Zbl

[61] L. A. Galin, “Neustanovivshayasya filtratsiya so svobodnoi poverkhnostyu”, Dokl. AN SSSR, 47:4 (1945), 246–249 | MR | Zbl

[62] P. Ya. Polubarinova-Kochina, “K voprosu o peremeschenii kontura neftenosnosti”, Dokl. AN SSSR, 47:4 (1945), 254–257

[63] P. Ya. Polubarinova-Kochina, “O neustanovivshikhsya dvizheniyakh v teorii filtratsii: O peremeschenii kontura neftenosnosti”, PMM, 9:1 (1945), 79–90 | Zbl

[64] P. P. Kufarev, “Reshenie zadachi o konture neftenosnosti dlya kruga”, Dokl. AN SSSR, 60:8 (1948), 1333–1334 | MR

[65] Yu. P. Vinogradov, P. P. Kufarev, “Ob odnoi zadache filtratsii”, PMM, 12:2 (1948), 181–198 | MR | Zbl

[66] J. R. Ockendon, S. D. Howison, “Kochina and Hele-Shaw in modern mathematics, natural science and industry”, J. Appl. Math. Mech., 66:3 (2002), 505–512 | DOI | MR | Zbl

[67] P. Ya. Kochina, Izbrannye trudy. Gidrodinamika i teoriya filtratsii, Nauka, M., 1991 | MR | Zbl

[68] B. Gustafsson, “Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows”, SIAM J. Math. Anal., 16:2 (1985), 279–300 | DOI | MR | Zbl

[69] B. Gustafsson, A. Vasil'ev, Conformal and potential analysis in Hele-Shaw cells, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2006 | MR | Zbl

[70] Hele-Shaw flows and related problems: Papers from the conference held in Oxford (1998), European J. Appl. Math., 10, no. 6, eds. S. D. Howison, J. R. Ockendon, Cambridge Univ. Press, New York, 1999 | MR

[71] A. M. Meirmanov, B. Zaltzman, “Global in time solution to the Hele-Shaw problem with a change of topology”, European J. Appl. Math., 13:4 (2002), 431–447 | DOI | MR | Zbl

[72] L. N. Aleksandrov, Kinetika kristallizatsii i perekristallizatsii poluprovodnikovykh plenok, Nauka, Novosibirsk, 1985

[73] E. N. Kablov, Litye lopatki gazoturbinnykh dvigatelei, MISIS, M., 2001

[74] B. G. Thomas, Ch. Beckermann (Eds.), Modeling of casting, welding advanced solidification processes (San Diego, CA, 1998), Minerals, Metals Materials Society, Warrendale, PA, 1998

[75] P. I. Plotnikov, V. N. Starovoitov, “The Stefan problem with surface tension as a limit of the phase field model”, Differential Equations, 29:3 (1993), 395–404 | MR | Zbl

[76] G. Caginalp, “Stefan and Hele-Shaw type problems as asymptotics limits of the phase-field equations”, Phys. Rev. A (3), 39:11 (1989), 5887–5896 | DOI | MR | Zbl

[77] G. Caginalp, X. Chen, “Convergence of the phase field model to its sharp interface limits”, European J. Appl. Math., 9:4 (1998), 417–445 | DOI | MR | Zbl

[78] V. G. Danilov, G. A. Omel'yanov, E. V. Radkevich, “Asymptotic behavior of the solution of a phase field system, and a modified Stefan problem”, Differential Equations, 31:3 (1995), 446–454 | MR | Zbl

[79] J. Escher, G. Simonett, “Classical solutions of multidimensional Hele–Shaw models”, SIAM J. Math. Anal., 28:5 (1997), 1028–1047 | DOI | MR | Zbl

[80] G. Prokert, “On evalution equations for moving domains”, Z. Anal. Anwend., 18:1 (1999), 67–95 | MR | Zbl

[81] A. S. Demidov, “Evolution of the perturbation of a circle in the Stokes–Leibenson problem for the Hele-Shaw flow”, J. Math. Sci. (N. Y.), 123:5 (2004), 4381–4403 | DOI | MR | Zbl

[82] A. S. Demidov, “Evolution of the perturbation of a circle in the Stokes–Leibenson problem for the Hele-Shaw flow. Part II”, J. Math. Sci. (N. Y.), 139:6 (2006), 7064–7078 | DOI | MR | Zbl

[83] A. S. Demidov, “On the evolution of a weak perturbation of a circle in the problem of a Hele-Shaw flow”, Russian Math. Surveys, 57:6 (2002), 1212–1214 | DOI | MR | Zbl

[84] A. Antontsev, A. M. Meirmanov, V. Yurinsky, Hele-Shaw flow in two dimensions: Global-in-time classical solutions, Preprint No 6, Universidade da Beira Interior, Portugal, 1999

[85] S. Richardson, “Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel”, J. Fluid Mech., 56:4 (1972), 609–618 | DOI | Zbl

[86] A. S. Demidov, J.-P. Lohéac, A quasi-contour model of Stokes–Leibenson problem for Hele-Shaw flows, CNRS UMR 5585 preprint 328, 2001 | MR

[87] A. S. Demidov, J.-P. Lohéac, “On the evolution near some attractive manifold in a problem for the Hele-Shaw flows”, Matematicheskie idei P. L. Chebyshëva i ikh prilozhenie k sovremennym problemam estestvoznaniya (Obninsk, 2002), Obninskii in-t atomnoi energetiki, Obninsk, 2002, 37–38 | MR | Zbl

[88] A. S. Demidov, J.-P. Lohéac, “The Stokes–Leibenson problem for Hele-Shaw flows”, Patterns and waves (St. Petersburg, 2002), eds. A. Abramian, S. Vaculenko, V. Volpert, AkademPrint, St. Petersburg, 2003, 103–124 | MR | Zbl

[89] O. A. Vasileva, A. S. Demidov, “Konechnotochechnaya model zadachi Stoksa–Leibenzona dlya Khil-Shou techeniya”, Fundam. i prikl. matem., 5:1 (1999), 67–84 | MR | Zbl

[90] A. S. Demidov, “A polygonal model for Hele-Shaw flow”, Russian Math. Surveys, 53:4 (1998), 846 | DOI | MR

[91] A. S. Demidov, “On the minimum of continuous functionals of derivatives for a harmonic function parametrized by its desired level line and/or other boundary data”, J. Math. Sci. (N. Y.), 139:6 (2006), 7047–7063 | DOI | MR | Zbl

[92] L. Föppl, “Wirbelbewegung hinter einem Kreiszylinder”, Sitzb. Bayr. Akad. Wiss., 1913, 1–17 | Zbl

[93] M. A. Lavrentev, B. V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, 2-e izd., Nauka, M., 1977 | MR

[94] A. S. Demidov, “Reduction of a nonstationary Euler hydrodynamic equation to a system of ordinary differential equations in the plane problem of cavitational flow with boundary control”, Math. Notes, 86:1–2 (2009), 41–52 | DOI | Zbl

[95] V. I. Vlasov, “Variatsiya konformnogo otobrazheniya pri singulyarnom deformirovanii oblasti i ee prilozhenie k teorii strui”, Analiticheskie i chislennye metody resheniya zadach matematicheskoi fiziki, Izd-vo VTs AN SSSR, M., 1989, 41–48 | MR | Zbl

[96] A. S. Demidov, A. S. Kochurov, A. Yu. Protasov, “Optimization of the speed of motion for a flow by the Föppl–Lavrent'ev scheme”, Russian J. Math. Phys. (to appear)

[97] G. Birkhoff, E. H. Zarantonello, Jets, wakes, and cavities, Academic Press, New York, 1957 | MR | MR | Zbl | Zbl

[98] F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford–New York–Paris; Addison-Wesley, Reading, MA–London, 1966 | MR | MR | Zbl | Zbl

[99] G. Birkhoff, Hydrodynamics. A study in logic, fact and similitude, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl | Zbl

[100] M. I. Vishik, S. L. Sobolev, “Obschaya postanovka nekotorykh kraevykh zadach dlya ellipticheskikh differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 111:3 (1956), 521–523 | MR | Zbl

[101] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Vol. I, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968 ; Vol. II, Travaux et Recherches Mathématiques, 18, 1968 ; Vol. III, Travaux et Recherches Mathématiques, 20, 1970 ; Dzh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, t. I, Mir, M., 1971 | MR | Zbl | MR | MR | Zbl | Zbl

[102] E. Madzhenes, “Interpolyatsionnye prostranstva i uravneniya v chastnykh proizvodnykh”, UMN, 21:2 (1966), 169–218 | MR

[103] R. Courant, D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience Publishers, New York–London, 1962 | MR | MR | Zbl | Zbl

[104] O. A. Oleinik, R. Temam, G. A. Yosifian, “Some nonlinear homogenization problems”, Appl. Anal., 57:1–2 (1995), 101–118 | DOI | MR | Zbl

[105] R. Aymar, P. Barabaschi, Y. Shimomura, “The ITER design”, Plasma Phys. Control. Fusion, 44 (2002), 519–565 | DOI

[106] T. C. Luce, “Development of steady-state advanced tokamak research in the DIII-D tokamak”, Fusion Science and Technology, 48:2 (2005), 1212–1225

[107] K. V. Brushlinskii, V. V. Savelev, “Magnitnye lovushki dlya uderzhaniya plazmy”, Matem. modelirovanie, 11:5 (1999), 3–36 | MR

[108] O. I. Bogoyavlenskij, “Exact global plasma equilibria”, Russian Math. Surveys, 55:3 (2000), 463–500 | DOI | MR | Zbl

[109] V. L. Polyachenko, A. M. Fridman, Ravnovesie i ustoichivost gravitiruyuschikh sistem, Nauka, M., 1976 | MR | Zbl

[110] V. D. Shafranov, “On magnetohydrodynamical equilibrium configurations”, Soviet Physics JETP, 6 (1958), 545–554 | MR | Zbl

[111] R. Lüst, A. Schlüter, “Axialsymmetrische magnetohydrodynamische gleichgewichtskonfigurationen”, Z. Naturf., 12A (1957), 850 | MR

[112] H. Grad, H. Rubin, “Hydromagnetic equilibria and force-free fields”, Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy (Geneva, 1958), Columbia Univ. Press, New York, 1958

[113] M. I. Gurevich, The theory of jets in an ideal fluid, Internat. Ser. Monogr. Pure Appl. Math., 93, Pergamon Press, Oxford–New York–Toronto, 1966 | MR | Zbl

[114] N. E. Kochin, I. A. Kibel', N. V. Rose, Theoretical hydromechanics, Wiley, New York–London–Sydney, 1964 | MR | Zbl

[115] M. Planck, “Zur Theorie der Flüssigkeitsstrahlen”, Annalen der Physik und Chemie (Wiedemanns Ann.), ser. 2, XXI (1884), 499–509

[116] S. A. Chaplygin, “O nekotorykh sluchayakh dvizheniya tverdogo tela v zhidkosti”, Matem. sb., XX (1897), 114–170, 173–246

[117] T. Levi-Civita, “Scie e leggi di resistenzia”, Rend. Circolo Math. Palermo, 23:1 (1907), 1–37 | DOI | Zbl

[118] A. S. Demidov, “Some applications of the Helmholtz–Kirchhoff method (equilibrium plasma in tokamaks, Hele-Shaw flow, and high-frequency asymptotics)”, Russian J. Math. Phys., 7:2 (2000), 166–186 | MR | Zbl

[119] B. W. Thompson, “Secondary flow in a Hele-Shaw cell”, J. Fluid Mech., 31:2 (1968), 379–395 | DOI | Zbl

[120] J. R. Ockendon, “Linear and nonlinear stability of a class of moving boundary problems”, Free boundary problems, Vol. II (Pavia, 1979), Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, 443–478 | MR | Zbl

[121] A. S. Demidov, J. Mwambakana, I. A. Fedotov, “Schwartz alternating method for elliptic boundary-value problems satisfying the maximum principle”, Math. Notes, 78:3–4 (2005), 577–580 | DOI | MR | Zbl

[122] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, New York; Springer, Berlin, 1965 | MR | MR | Zbl | Zbl

[123] V. I. Arnol'd, “I. G. Petrovskii, Hilbert's topological problems, and modern mathematics”, Russian Math. Surveys, 57:4 (2002), 833–845 | DOI | MR | Zbl

[124] J. Leray, J. L. Lions, “Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty–Browder”, Bull. Soc. Math. France, 93 (1965), 97–107 | MR | Zbl