Mots-clés : moduli space, quantization.
@article{RM_2009_64_6_a2,
author = {M. Mazzocco and L. O. Chekhov},
title = {Orbifold {Riemann} surfaces: {Teichm\"uller~spaces} and algebras of geodesic functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1079--1130},
year = {2009},
volume = {64},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_6_a2/}
}
TY - JOUR AU - M. Mazzocco AU - L. O. Chekhov TI - Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 1079 EP - 1130 VL - 64 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2009_64_6_a2/ LA - en ID - RM_2009_64_6_a2 ER -
M. Mazzocco; L. O. Chekhov. Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 6, pp. 1079-1130. http://geodesic.mathdoc.fr/item/RM_2009_64_6_a2/
[1] E. Verlinde, H. Verlinde, “Conformal field theory and geometric quantization”, Superstrings' 89 (Trieste, 1989), World Sci. Publ., River Edge, NJ, 1990, 422–449 | MR | Zbl
[2] J. E. Nelson, T. Regge, “Homotopy groups and $(2+1)$-dimensional quantum gravity”, Nuclear Phys. B, 328:1 (1989), 190–202 | DOI | MR
[3] J. E. Nelson, T. Regge, F. Zertuche, “Homotopy groups and $(2+1)$-dimensional quantum de Sitter gravity”, Nuclear Phys. B, 339:2 (1990), 516–532 | DOI | MR
[4] L. O. Chekhov, V. V. Fock, “Observables in 3D gravity and geodesic algebras”, Quantum groups and integrable systems (Prague, 2000), Czechoslovak J. Phys., 50:11 (2000), 1201–1208 | DOI | MR | Zbl
[5] L. O. Chekhov, R. C. Penner, “On quantizing Teichmüller and Thurston theories”, Handbook on Teichmüller Theory, Vol. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 579–646 | MR | Zbl
[6] L. O. Chekhov, “Orbifold Riemann surfaces and geodesic algebras”, J. Phys. A, 42 (2009), Paper 304007 | DOI | MR
[7] M. Ugaglia, “On a Poisson structure on the space of Stokes matrices”, Internat. Math. Res. Notices, 1999:9 (1999), 473–493 ; arXiv: math/9902045 | DOI | MR | Zbl
[8] A. I. Bondal, “A symplectic groupoid of triangular bilinear forms and the braid group”, Izv. Math., 68:4 (2004), 659–708 | DOI | MR | Zbl
[9] L. O. Chekhov, M. Mazzocco, Isomonodromic deformations and twisted Yangians arising in Teichmüller theory, , 2009 arXiv: math/0909.5350
[10] A. I. Molev, E. Ragoucy, P. Sorba, “Coideal subalgebras in quantum affine algebras”, Rev. Math. Phys., 15:8 (2003), 789–822 | DOI | MR | Zbl
[11] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[12] L. O. Chekhov, “Teichmüller theory of bordered surfaces”, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 066 | DOI | MR | Zbl
[13] A. I. Molev, E. Ragoucy, “Symmetries and invariants of twisted quantum algebras and associated Poisson algebras”, Rev. Math. Phys., 20:2 (2008), 173–198 | DOI | MR | Zbl
[14] W. M. Goldman, “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85:2 (1986), 263–302 | DOI | MR | Zbl
[15] D. Korotkin, H. Samtleben, “Quantization of coset space $\sigma$-models coupled to two-dimensional gravity”, Comm. Math. Phys., 190:2 (1997), 411–457 | DOI | MR | Zbl
[16] V. V. Fock, Description of moduli space of projective structures via fat graphs, arxiv.org/abs/hep-th/9312193
[17] L. O. Chekhov, “Riemann surfaces with orbifold points”, Proc. Steklov Math. Inst., 266:1 (2009), 228–250 | DOI
[18] R. C. Penner, “The decorated Teichmüller space of Riemann surfaces”, Comm. Math. Phys., 113:2 (1988), 299–339 | DOI | MR | Zbl
[19] V. V. Fock, A. B. Goncharov, “Dual Teichmüller and lamination spaces”, Handbook of Teichmüller theory, Vol. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 647–684 ; , 2005 arXiv: math/0510312 | MR | Zbl
[20] V. V. Fock, Dual Teichmüller spaces, , 1997 arXiv: dg-ga/9702018
[21] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, , 1998 arXiv: math/9801039
[22] F. Bonahon, “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse Math. (6), 5:2 (1996), 233–297 | MR | Zbl
[23] S. Fomin, A. Zelevinsky, “Cluster algebras. I. Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 ; , 2001 arXiv: math/0104151 | DOI | MR | Zbl
[24] S. Fomin, A. Zelevinsky, The Laurent phenomenon, , 2001 arXiv: math/0104241
[25] V. V. Fock, L. O. Chekhov, “A quantum Teichmüller space”, Theoret. and Math. Phys., 120:3 (1999), 1245–1259 | DOI | MR | Zbl
[26] V. V. Fock, L. O. Chekhov, “Quantum mapping class group, pentagon relation, and geodesics”, Proc. Steklov Math. Inst., 226 (1999), 149–163 | MR | Zbl
[27] S. Fomin, M. Shapiro, D. Thurston, “Cluster algebras and triangulated surfaces. I: Cluster complexes”, Acta Math., 201, no. 1, 83–146 ; , 2006 arXiv: math/0608367 | DOI | Zbl
[28] W. Dekkers, “The matrix of a connection having regular singularities on a vector bundle of rank $2$ on $P^{1}(C)$”, Équations différentielles et systèmes de Pfaff dans le champ complexe (Sem., Inst. Rech. Math. Avancée, Strasbourg, 1975), Lecture Notes in Math., 712, Springer, Berlin, 1979, 33–43 | DOI | MR | Zbl
[29] B. Malgrange, “Sur les déformations isomonodromiques. I: Singularités régulières”, Mathematics and physics (Paris, 1979–1982), Progr. Math., 37, Birkhäuser, Boston, MA, 1983, 401–426 | MR | Zbl
[30] T. Miwa, “Painlevé property of monodromy preserving deformation equations and the analyticity of $\tau$-function”, Publ. Res. Inst. Math. Sci., 17:2 (1981), 703–721 | DOI | MR | Zbl
[31] B. Dubrovin, M. Mazzocco, “Monodromy of certain Painlevé-VI transcendents and reflection group”, Invent. Math., 141:1 (2000), 55–147 | DOI | MR | Zbl
[32] M. Sato, T. Miwa, M. Jimbo, “Holonomic quantum fields. II: The Riemann–Hilbert problem”, Publ. Res. Inst. Math. Sci., 15:1 (1979), 201–278 | DOI | MR | Zbl
[33] J. Teschner, “An analog of a modular functor from quantized Teichmüller theory”, Handbook of Teichmüller theory, Vol. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 685–760 ; , 2005 arXiv: math/0510174 | MR | Zbl
[34] M. Jimbo, T. Miwa, “Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2:3 (1981), 407–448 | DOI | MR
[35] M. Jimbo, T. Miwa, “Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. III”, Phys. D, 4:1 (1982), 26–46 | DOI | MR
[36] M. Jimbo, T. Miwa, K. Ueno, “Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. I”, Phys. D, 2:2 (1981), 306–352 | DOI | MR