Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 6, pp. 1079-1130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A fat graph description is given for Teichmüller spaces of\linebreak Riemann surfaces with holes and with ${\mathbb Z}_2$- and ${\mathbb Z}_3$-orbifold points (conical singularities) in the Poincaré uniformization. The corresponding mapping class group transformations are presented, geodesic functions are constructed, and the Poisson structure is introduced. The resulting Poisson algebras are then quantized. In the particular cases of surfaces with $n$ ${\mathbb Z}_2$-orbifold points and with one and two holes, the respective algebras $A_n$ and $D_n$ of geodesic functions (classical and quantum) are obtained. The infinite-dimensional Poisson algebra ${\mathfrak D}_n$, which is the semiclassical limit of the twisted $q$-Yangian algebra $Y'_q(\mathfrak{o}_n)$ for the orthogonal Lie algebra $\mathfrak{o}_n$, is associated with the algebra of geodesic functions on an annulus with $n$ ${\mathbb Z}_2$-orbifold points, and the braid group action on this algebra is found. From this result the braid group actions are constructed on the finite-dimensional reductions of this algebra: the $p$-level reduction and the algebra $D_n$. The central elements for these reductions are found. Also, the algebra ${\mathfrak D}_n$ is interpreted as the Poisson algebra of monodromy data of a Frobenius manifold in the vicinity of a non-semisimple point. Bibliography: 36 titles.
Keywords: conical singularities, geodesic algebra
Mots-clés : moduli space, quantization.
@article{RM_2009_64_6_a2,
     author = {M. Mazzocco and L. O. Chekhov},
     title = {Orbifold {Riemann} surfaces: {Teichm\"uller~spaces} and algebras of geodesic functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1079--1130},
     year = {2009},
     volume = {64},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_6_a2/}
}
TY  - JOUR
AU  - M. Mazzocco
AU  - L. O. Chekhov
TI  - Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 1079
EP  - 1130
VL  - 64
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_6_a2/
LA  - en
ID  - RM_2009_64_6_a2
ER  - 
%0 Journal Article
%A M. Mazzocco
%A L. O. Chekhov
%T Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 1079-1130
%V 64
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2009_64_6_a2/
%G en
%F RM_2009_64_6_a2
M. Mazzocco; L. O. Chekhov. Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 6, pp. 1079-1130. http://geodesic.mathdoc.fr/item/RM_2009_64_6_a2/

[1] E. Verlinde, H. Verlinde, “Conformal field theory and geometric quantization”, Superstrings' 89 (Trieste, 1989), World Sci. Publ., River Edge, NJ, 1990, 422–449 | MR | Zbl

[2] J. E. Nelson, T. Regge, “Homotopy groups and $(2+1)$-dimensional quantum gravity”, Nuclear Phys. B, 328:1 (1989), 190–202 | DOI | MR

[3] J. E. Nelson, T. Regge, F. Zertuche, “Homotopy groups and $(2+1)$-dimensional quantum de Sitter gravity”, Nuclear Phys. B, 339:2 (1990), 516–532 | DOI | MR

[4] L. O. Chekhov, V. V. Fock, “Observables in 3D gravity and geodesic algebras”, Quantum groups and integrable systems (Prague, 2000), Czechoslovak J. Phys., 50:11 (2000), 1201–1208 | DOI | MR | Zbl

[5] L. O. Chekhov, R. C. Penner, “On quantizing Teichmüller and Thurston theories”, Handbook on Teichmüller Theory, Vol. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 579–646 | MR | Zbl

[6] L. O. Chekhov, “Orbifold Riemann surfaces and geodesic algebras”, J. Phys. A, 42 (2009), Paper 304007 | DOI | MR

[7] M. Ugaglia, “On a Poisson structure on the space of Stokes matrices”, Internat. Math. Res. Notices, 1999:9 (1999), 473–493 ; arXiv: math/9902045 | DOI | MR | Zbl

[8] A. I. Bondal, “A symplectic groupoid of triangular bilinear forms and the braid group”, Izv. Math., 68:4 (2004), 659–708 | DOI | MR | Zbl

[9] L. O. Chekhov, M. Mazzocco, Isomonodromic deformations and twisted Yangians arising in Teichmüller theory, , 2009 arXiv: math/0909.5350

[10] A. I. Molev, E. Ragoucy, P. Sorba, “Coideal subalgebras in quantum affine algebras”, Rev. Math. Phys., 15:8 (2003), 789–822 | DOI | MR | Zbl

[11] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[12] L. O. Chekhov, “Teichmüller theory of bordered surfaces”, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 066 | DOI | MR | Zbl

[13] A. I. Molev, E. Ragoucy, “Symmetries and invariants of twisted quantum algebras and associated Poisson algebras”, Rev. Math. Phys., 20:2 (2008), 173–198 | DOI | MR | Zbl

[14] W. M. Goldman, “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85:2 (1986), 263–302 | DOI | MR | Zbl

[15] D. Korotkin, H. Samtleben, “Quantization of coset space $\sigma$-models coupled to two-dimensional gravity”, Comm. Math. Phys., 190:2 (1997), 411–457 | DOI | MR | Zbl

[16] V. V. Fock, Description of moduli space of projective structures via fat graphs, arxiv.org/abs/hep-th/9312193

[17] L. O. Chekhov, “Riemann surfaces with orbifold points”, Proc. Steklov Math. Inst., 266:1 (2009), 228–250 | DOI

[18] R. C. Penner, “The decorated Teichmüller space of Riemann surfaces”, Comm. Math. Phys., 113:2 (1988), 299–339 | DOI | MR | Zbl

[19] V. V. Fock, A. B. Goncharov, “Dual Teichmüller and lamination spaces”, Handbook of Teichmüller theory, Vol. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 647–684 ; , 2005 arXiv: math/0510312 | MR | Zbl

[20] V. V. Fock, Dual Teichmüller spaces, , 1997 arXiv: dg-ga/9702018

[21] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, , 1998 arXiv: math/9801039

[22] F. Bonahon, “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse Math. (6), 5:2 (1996), 233–297 | MR | Zbl

[23] S. Fomin, A. Zelevinsky, “Cluster algebras. I. Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529 ; , 2001 arXiv: math/0104151 | DOI | MR | Zbl

[24] S. Fomin, A. Zelevinsky, The Laurent phenomenon, , 2001 arXiv: math/0104241

[25] V. V. Fock, L. O. Chekhov, “A quantum Teichmüller space”, Theoret. and Math. Phys., 120:3 (1999), 1245–1259 | DOI | MR | Zbl

[26] V. V. Fock, L. O. Chekhov, “Quantum mapping class group, pentagon relation, and geodesics”, Proc. Steklov Math. Inst., 226 (1999), 149–163 | MR | Zbl

[27] S. Fomin, M. Shapiro, D. Thurston, “Cluster algebras and triangulated surfaces. I: Cluster complexes”, Acta Math., 201, no. 1, 83–146 ; , 2006 arXiv: math/0608367 | DOI | Zbl

[28] W. Dekkers, “The matrix of a connection having regular singularities on a vector bundle of rank $2$ on $P^{1}(C)$”, Équations différentielles et systèmes de Pfaff dans le champ complexe (Sem., Inst. Rech. Math. Avancée, Strasbourg, 1975), Lecture Notes in Math., 712, Springer, Berlin, 1979, 33–43 | DOI | MR | Zbl

[29] B. Malgrange, “Sur les déformations isomonodromiques. I: Singularités régulières”, Mathematics and physics (Paris, 1979–1982), Progr. Math., 37, Birkhäuser, Boston, MA, 1983, 401–426 | MR | Zbl

[30] T. Miwa, “Painlevé property of monodromy preserving deformation equations and the analyticity of $\tau$-function”, Publ. Res. Inst. Math. Sci., 17:2 (1981), 703–721 | DOI | MR | Zbl

[31] B. Dubrovin, M. Mazzocco, “Monodromy of certain Painlevé-VI transcendents and reflection group”, Invent. Math., 141:1 (2000), 55–147 | DOI | MR | Zbl

[32] M. Sato, T. Miwa, M. Jimbo, “Holonomic quantum fields. II: The Riemann–Hilbert problem”, Publ. Res. Inst. Math. Sci., 15:1 (1979), 201–278 | DOI | MR | Zbl

[33] J. Teschner, “An analog of a modular functor from quantized Teichmüller theory”, Handbook of Teichmüller theory, Vol. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 685–760 ; , 2005 arXiv: math/0510174 | MR | Zbl

[34] M. Jimbo, T. Miwa, “Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2:3 (1981), 407–448 | DOI | MR

[35] M. Jimbo, T. Miwa, “Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. III”, Phys. D, 4:1 (1982), 26–46 | DOI | MR

[36] M. Jimbo, T. Miwa, K. Ueno, “Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. I”, Phys. D, 2:2 (1981), 306–352 | DOI | MR