Elliptic and parabolic equations for measures
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 6, pp. 973-1078 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in $L^p$-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.
Keywords: stationary distribution of a diffusion process, transition probability.
Mots-clés : elliptic equation, parabolic equation
@article{RM_2009_64_6_a1,
     author = {V. I. Bogachev and N. V. Krylov and M. R\"ockner},
     title = {Elliptic and parabolic equations for measures},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {973--1078},
     year = {2009},
     volume = {64},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_6_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - N. V. Krylov
AU  - M. Röckner
TI  - Elliptic and parabolic equations for measures
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 973
EP  - 1078
VL  - 64
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_6_a1/
LA  - en
ID  - RM_2009_64_6_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A N. V. Krylov
%A M. Röckner
%T Elliptic and parabolic equations for measures
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 973-1078
%V 64
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2009_64_6_a1/
%G en
%F RM_2009_64_6_a1
V. I. Bogachev; N. V. Krylov; M. Röckner. Elliptic and parabolic equations for measures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 6, pp. 973-1078. http://geodesic.mathdoc.fr/item/RM_2009_64_6_a1/

[1] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 ; A. N. Kolmogorov, “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–41 | DOI | MR | Zbl

[2] A. N. Kolmogoroff, “Zur Umkehrbarkeit der statistischen Naturgesetze”, Math. Ann., 113:1 (1937), 766–772 ; A. N. Kolmogorov, “Ob obratimosti statisticheskikh zakonov prirody”, Teoriya veroyatnostei i matematicheskaya statistika. Izbrannye trudy, Nauka, M., 1986, 197–204 | DOI | MR | Zbl | MR | Zbl

[3] V. I. Bogachev, M. Röckner, “Hypoellipticity and invariant measures for infinite dimensional diffusions”, C. R. Acad. Sci. Paris Sér. I Math., 318:6 (1994), 553–558 | MR | Zbl

[4] V. I. Bogachev, M. Röckner, “Regularity of invariant measures on finite and infinite dimensional spaces and applications”, J. Funct. Anal., 133:1 (1995), 168–223 | DOI | MR | Zbl

[5] V. I. Bogachev, N. Krylov, M. Röckner, “Regularity of invariant measures: the case of non-constant diffusion part”, J. Funct. Anal., 138:1 (1996), 223–242 | DOI | MR | Zbl

[6] V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic regularity and essential self-adjointness of Dirichlet operators on $\mathbb{R}^{n}$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:3 (1997), 451–461 | MR | Zbl

[7] S. Albeverio, V. Bogachev, M. Röckner, “On uniqueness of invariant measures for finite- and infinite-dimensional diffusions”, Comm. Pure Appl. Math., 52:3 (1999), 325–362 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] V. Bogachev, M. Röckner, “A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts”, Theory Probab. Appl., 45:3 (2001), 363–378 ; Р’. Р�. БогачРμРІ, Рњ. РёкнРμСЂ, “РџРёСЃСЊРјРѕ РІ СЂРμдакцию: ‘РћР±РѕР±С‰РμРЅРёРμ С‚РμРѕСЂРμРјС‹ Хасьминского Рѕ СЃСѓС‰Рμствовании инвариантныС... РјРμСЂ для локально РёРЅС‚РμРіСЂРёСЂСѓРμРјС‹С... СЃРЅРѕСЃРѕРІ’ ”, РўРμРѕСЂРёСЏ РІРμроятн. Рё РμРμ РїСЂРёРјРμРЅ., 46:3 (2001), 600 | DOI | MR | MR | Zbl

[9] V. I. Bogachev, N. V. Krylov, M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11–12 (2001), 2037–2080 | DOI | MR | Zbl

[10] V. I. Bogachev, M. Röckner, “Elliptic equations for measures on infinite dimensional spaces and applications”, Probab. Theory Related Fields, 120:4 (2001), 445–496 | DOI | MR | Zbl

[11] V. I. Bogachev, M. Röckner, W. Stannat, “Uniqueness of invariant measures and essential $m$-dissipativity of diffusion operators on $L^1$”, Infinite dimensional stochastic analysis (Amsterdam, 1999), Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000, 39–54 | MR | Zbl

[12] V. I. Bogachev, M. Rockner, W. Stannat, “Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions”, Sb. Math., 193:7–8 (2002), 945–976 | DOI | MR | Zbl

[13] A. I. Kirillov, “Two mathematical problems of canonical quantization. I”, Theoret. Math. Phys., 87:1 (1991), 345–353 ; “II”, 87:2 (1991), 163–172 | DOI | DOI | DOI | DOI | MR | MR

[14] “II”, 87, no. 2, 1991, 447–454 ; “III: СтоС...астичРμская РјРμС...аника вакуума”, 91, No 3, 1992, 377–395 | DOI | DOI | DOI | DOI | MR | MR

[15] “III: Stochastic vacuum mechanics”, 91, no. 3, 1992, 591–603 ; “IV”, 93, No 2, 1992, 249–263 | DOI | DOI | DOI | DOI | MR | MR

[16] “IV”, 93, no. 2, 1992, 1251–1261 | DOI | DOI | DOI | DOI | MR | MR

[17] A. I. Kirillov, “Infinite-dimensional analysis and quantum theory as semimartingale calculus”, Russian Math. Surveys, 49:3 (1994), 43–95 | DOI | MR | Zbl

[18] A. I. Kirillov, “Field of sine-Gordon type in spacetime of arbitrary dimension: Existence of the Nelson measure”, Theoret. Math. Phys., 98:1 (1994), 8–19 ; “РџРѕР»Рμ типа sin-Gordon РІ пространствРμ-РІСЂРμРјРμРЅРё произвольноРNo размРμрности. II: СтоС...астичРμСЃРєРѕРμ квантованиРμ”, РўРњР¤, 105:2 (1995), 179–197 | DOI | DOI | MR | MR | Zbl | Zbl

[19] “Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization”, Theoret. Math. Phys., 105:2 (1995), 1329–1345 | DOI | DOI | MR | MR | Zbl | Zbl

[20] A. I. Kirillov, “On the reconstruction of measures from their logarithmic derivatives”, Izv. Math., 59:1 (1995), 121–139 | DOI | MR | Zbl

[21] Z. M. Ma, M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, Universitext, Springer-Verlag, Berlin, 1992 | MR | Zbl

[22] V. I. Bogachev, G. Da Prato, M. Röckner, “Existence of solutions to weak parabolic equations for measures”, Proc. London Math. Soc. (3), 88:3 (2004), 753–774 | DOI | MR | Zbl

[23] V. I. Bogachev, G. Da Prato, M. Röckner, “On parabolic equations for measures”, Comm. Partial Differential Equations, 33:1–3 (2008), 397–418 | DOI | MR | Zbl

[24] V. I. Bogachev, G. Da Prato, M. Röckner, W. Stannat, “Uniqueness of solutions to weak parabolic equations for measures”, Bull. Lond. Math. Soc., 39:4 (2007), 631–640 | DOI | MR | Zbl

[25] V. I. Bogachev, M. Rockner, S. V. Shaposhnikov, “Global regularity and bounds for solutions of parabolic equations for probability measures”, Theory Probab. Appl., 50:4 (2006), 561–581 | DOI | MR | Zbl

[26] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Estimates of densities of stationary distributions and transition probabilities of diffusion processes”, Theory Probab. Appl., 52:2 (2008), 209–236 | DOI | MR | Zbl

[27] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Positive densities of transition probabilities of diffusion processes”, Theory Probab. Appl., 53:2 (2009), 194–215 | DOI

[28] V. I. Bogachev, M. Röckner, F.-Y. Wang, “Elliptic equations for invariant measures on finite and infinite dimensional manifolds”, J. Math. Pures Appl. (9), 80:2 (2001), 177–221 | DOI | MR | Zbl

[29] V. I. Bogachev, M. Röckner, F.-Y. Wang, “Invariance implies Gibbsian: some new results”, Comm. Math. Phys., 248:2 (2004), 335–355 | DOI | MR | Zbl

[30] V. I. Bogachev, Differentsiruemye mery i ischislenie Mallyavena, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008

[31] P. Sjögren, “On the adjoint of an elliptic linear differential operator and its potential theory”, Ark. Mat., 11:1–2 (1973), 153–165 | DOI | MR | Zbl

[32] A. Bensoussan, Perturbation methods in optimal control, Wiley/Gauthier-Villars Series in Modern Applied Mathematics, Wiley, Chichester; Gauthier-Villars, Montrouge, 1988 | MR | Zbl

[33] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren Math. Wiss., 130, Springer-Verlag, New York, 1966 | DOI | MR | Zbl

[34] S. V. Shaposhnikov, “On Morrey's estimate of the Sobolev norms of solutions of elliptic equations”, Math. Notes, 79:3–4 (2006), 413–430 | DOI | MR | Zbl

[35] S. V. Shaposhnikov, “On interior estimates of the Sobolev norms of solutions of elliptic equations”, Math. Notes, 83:1–2 (2008), 285–289 | DOI | MR | Zbl

[36] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems. Vol. I, Scripta Series in Mathematics, Winston, Washington, DC; Halsted Press, New York–Toronto–London, 1978 ; Vol. II, Scripta Series in Mathematics, Winston, Washington, DC; Halsted Press, New York–Toronto–London, 1979 | MR | Zbl | MR | Zbl | MR | Zbl

[37] S. V. Shaposhnikov, “Positiveness of invariant measures of diffusion processes”, Dokl. Math., 76:1 (2007), 533–538 | DOI | MR | Zbl

[38] W. Littman, “A strong maximum principle for weakly $L$-subharmonic functions”, J. Math. Mech., 8 (1959), 761–770 | MR | Zbl

[39] P. Bauman, “Positive solutions of elliptic equations in nondivergent form and their adjoints”, Ark. Mat., 22:1–2 (1984), 153–173 | DOI | MR | Zbl

[40] L. Escauriaza, “Weak type-$(1,1)$ inequalities and regularity properties of adjoint and normalized adjoint solutions to linear nondivergence form operators with VMO coefficients”, Duke Math. J., 74:1 (1994), 177–201 | DOI | MR | Zbl

[41] N. V. Krylov, “Parabolic and elliptic equations with VMO coefficients”, Comm. Partial Differential Equations, 32:1–3 (2007), 453–475 | DOI | MR | Zbl

[42] N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, Grad. Stud. Math., 96, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[43] N. V. Krylov, “Second-order elliptic equations with variably partially VMO coefficients”, J. Funct. Anal., 257:6 (2009), 1695–1712 ; , 2008 arXiv: 0807.0926 | DOI | MR | Zbl

[44] T. Jin, V. Maz'ya, J. Van Schaftingen, “Pathological solutions to elliptic problems in divergence form with continuous coefficients”, C. R. Math. Acad. Sci. Paris, 347:13–14 (2009), 773–778 | DOI | MR

[45] A. Yu. Veretennikov, É. Pardoux, “On the smoothness of an invariant measure of a Markov chain with respect to a parameter”, Dokl. Math., 61:1 (2000), 31–33 | MR | Zbl

[46] R. Z. Khas'minskii, “Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations”, Theory Probab. Appl., 5:2 (1960), 179–196 | DOI | MR | Zbl | Zbl

[47] R. Z. Has'minskii, Stochastic stability of differential equations, Monogr. Textbooks Mech. Solids Fluids: Mech. Anal., 7, Sijthoff and Noordhoff, Germantown, MD, 1980 | MR | MR | Zbl | Zbl

[48] N. S. Trudinger, “Linear elliptic operators with measurable coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 27 (1973), 265–308 | MR | Zbl

[49] N. S. Trudinger, “Maximum principles for linear, non-uniformly elliptic operators with measurable coefficients”, Math. Z., 156:3 (1977), 291–301 | DOI | MR | Zbl

[50] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin–New York, 1977 | MR | MR | Zbl | Zbl

[51] A. Yu. Veretennikov, “On polynomial mixing bounds for stochastic differential equations”, Stochastic Process. Appl., 70:1 (1997), 115–127 | DOI | MR | Zbl

[52] V. I. Bogachev, M. Röckner, T. S. Zhang, “Existence and uniqueness of invariant measures: an approach via sectorial forms”, Appl. Math. Optim., 41:1 (2000), 87–109 | DOI | MR | Zbl

[53] V. A. Liskevich, Yu. A. Semenov, “Dirichlet operators: a priori estimates and the uniqueness problem”, J. Funct. Anal., 109:1 (1992), 199–213 | DOI | MR | Zbl

[54] W. Stannat, “(Nonsymmetric) Dirichlet operators on $L^1$: existence, uniqueness and associated Markov processes”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 99–140 | MR | Zbl

[55] M. Röckner, T. S. Zhang, “Uniqueness of generalized Schrödinger operators. Part II”, J. Funct. Anal., 119:2 (1994), 455–467 | DOI | MR | Zbl

[56] E. Schrödinger, “Über die Umkehrung der Naturgesetze”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1931, no. 8–9, 144–153 | Zbl

[57] U. G. Haussmann, É. Pardoux, “Time reversal of diffusions”, Ann. Probab., 14:4 (1986), 1188–1205 | DOI | MR | Zbl

[58] H. Föllmer, “Random fields and diffusion processes”, École d'Été de Probabilités de Saint-Flour XV–XVII, Lect. Notes in Math., 1362, Springer, Berlin, 1988, 101–203 | DOI | MR | Zbl

[59] A. Millet, D. Nualart, M. Sanz, “Integration by parts and time reversal for diffusion processes”, Ann. Probab., 17:1 (1989), 208–238 | DOI | MR | Zbl

[60] A. Millet, D. Nualart, M. Sanz, “Time reversal for infinite-dimensional diffusions”, Probab. Theory Relat. Fields, 82:3 (1989), 315–347 | DOI | MR | Zbl

[61] P. Echeverría, “A criterion for invariant measures of Markov processes”, Z. Wahrscheinlichkeitstheor. verw. Geb., 61:1 (1982), 1–16 | DOI | MR | Zbl

[62] A. Albanese, L. Lorenzi, E. Mangino, “$L^p$-uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R}^N$”, J. Funct. Anal., 256:4 (2009), 1238–1257 | DOI | MR | Zbl

[63] A. A. Albanese, E. M. Mangino, “Cores for Feller semigroups with an invariant measure”, J. Differential Equations, 225:1 (2006), 361–377 ; A. A. Albanese, E. M. Mangino, “Corrigendum to ‘Cores for Feller semigroups with an invariant measure’ ”, J. Differential Equations, 244:11 (2008), 2980–2982 | DOI | MR | Zbl | DOI | MR | Zbl

[64] R. N. Bhattacharya, “Criteria for recurrence and existence of invariant measures for multidimensional diffusions”, Ann. Probab., 6:4 (1978), 541–553 ; R. N. Bhattacharya, “Correction Note: Correction to ‘Criteria for recurrence and existence of invariant measures for multidimensional diffusions’ ”, Ann. Probab., 8:6 (1980), 1194–1195 | DOI | MR | Zbl | MR | Zbl

[65] R. N. Bhattacharya, S. Ramasubramanian, “Recurrence and ergodicity of diffusions”, J. Multivariate Anal., 12:1 (1982), 95–122 | DOI | MR | Zbl

[66] Y. Miyahara, “Invariant measures of ultimately bounded stochastic processes”, Nagoya Math. J., 49 (1973), 149–153 | MR | Zbl

[67] M. Zakai, “A Lyapunov criterion for the existence of stationary probability distributions for systems perturbed by noise”, SIAM J. Control, 7:3 (1969), 390–397 | DOI | MR | Zbl

[68] L. Arnold, W. Kliemann, “Qualitative theory of stochastic systems”, Probabilistic analysis and related topics, Vol. 3, Academic Press, New York, 1983, 1–79 | MR | Zbl

[69] A. A. Borovkov, Ergodicity and stability of stochastic processes, Wiley, Chichester, 1998 | MR | MR | Zbl | Zbl

[70] M. Cohen de Lara, “Geometric and symmetry properties of a nondegenerate diffusion process”, Ann. Probab., 23:4 (1995), 1557–1604 | DOI | MR | Zbl

[71] S. A. Klokov, A. Yu. Veretennikov, “On subexponential mixing rate for Markov processes”, Theory Probab. Appl., 49:1 (2005), 110–122 | DOI | MR | Zbl

[72] H. J. Kushner, Stochastic stability and control, Math. Sci. Eng., 33, Academic Press, New York, 1967 ; G. Dzh. Kushner, Stokhasticheskaya ustoichivost i upravlenie, Mir, M., 1969 | MR | Zbl

[73] S. Meyn, R. L. Tweedie, Markov chains and stochastic stability, Prologue by Peter W. Glynn, 2nd ed., Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[74] É. Pardoux, A. Yu. Veretennikov, “On the Poisson equation and diffusion approximation. I”, Ann. Probab., 29:3 (2001), 1061–1085 ; “II”, 31:3 (2003), 1166–1192 ; “III”, 33:3 (2005), 1111–1133 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[75] R. G. Pinsky, Positive harmonic functions and diffusion, Cambridge Stud. Adv. Math., 45, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[76] V. M. Shurenkov, Ergodicheskie protsessy Markova, Nauka, M., 1989 | MR | Zbl

[77] A. V. Skorokhod, Asymptotic methods in the theory of stochastic differential equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1989 | MR | MR | Zbl | Zbl

[78] A. Yu. Veretennikov, “On polynomial mixing and convergence rate for stochastic difference and differential equations”, Theory Probab. Appl., 44:2 (1999), 361–374 | DOI | MR | Zbl

[79] G. Da Prato, A. Lunardi, “On a class of self-adjoint elliptic operators in $L^2$ spaces with respect to invariant measures”, J. Differential Equations, 234:1 (2007), 54–79 | DOI | MR | Zbl

[80] B. Farkas, A. Lunardi, “Maximal regularity for Kolmogorov operators in $L^2$ spaces with respect to invariant measures”, J. Math. Pures Appl. (9), 86:4 (2006), 310–321 | DOI | MR | Zbl

[81] L. Lorenzi, M. Bertoldi, Analytical methods for Markov semigroups, Pure Appl. Math. (Boca Raton), 283, Chapman Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl

[82] G. Metafune, D. Pallara, M. Wacker, “Compactness properties of Feller semigroups”, Studia Math., 153:2 (2002), 179–206 | DOI | MR | Zbl

[83] D. Bakry, “L'hypercontractivité et son utilisation en théorie des semigroupes”, Lectures on probability theory (Saint-Flour, 1992), Lecture Notes in Math., 1581, Springer, Berlin, 1994, 1–114 | DOI | MR | Zbl

[84] P. Cattiaux, A. Guillin, F.-Y. Wang, L. Wu, “Lyapunov conditions for super Poincaré inequalities”, J. Funct. Anal., 256:6 (2009), 1821–1841 | DOI | MR | Zbl

[85] Y. Fujita, “On a critical role of Ornstein–Uhlenbeck operators in the Poincaré inequality”, Differential Integral Equations, 19:12 (2006), 1321–1332 | MR

[86] M. Ledoux, “On an integral criterion for hypercontractivity of diffusion semigroups and extremal functions”, J. Funct. Anal., 105:2 (1992), 444–465 | DOI | MR | Zbl

[87] M. Röckner, F.-Y. Wang, “Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds”, Forum Math., 15:6 (2003), 893–921 | DOI | MR | Zbl

[88] S. V. Shaposhnikov, “The nonuniqueness of solutions to elliptic equations for probability measures”, Dokl. Math., 77:3 (2008), 401–403 | DOI | MR | Zbl

[89] S. V. Shaposhnikov, “On nonuniqueness of solutions to elliptic equations for probability measures”, J. Funct. Anal., 254:10 (2008), 2690–2705 | DOI | MR | Zbl

[90] V. V. Zhikov, “Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms”, Funct. Anal. Appl., 38:3 (2004), 173–183 | DOI | MR | Zbl

[91] S. R. S. Varadhan, Lectures on diffusion problems and partial differential equations, Tata Inst. Fund. Res. Lectures on Math. and Phys., 64, Tata Institute of Fundamental Research, Bombay, 1980 | MR | Zbl

[92] J. L. Doob, “Asymptotic properties of Markoff transitions probabilities”, Trans. Amer. Math. Soc., 63:3 (1948), 393–421 | DOI | MR | Zbl

[93] G. Da Prato, J. Zabczyk, Ergodicity for infinite-dimensional systems, London Math. Soc. Lecture Note Ser., 229, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[94] P. Cattiaux, M. Fradon, “Entropy, reversible diffusion processes, and Markov uniqueness”, J. Funct. Anal., 138:1 (1996), 243–272 | DOI | MR | Zbl

[95] A. Eberle, Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Lecture Notes in Math., 1718, Springer, Berlin, 1999 | DOI | MR | Zbl

[96] A. Eberle, “$L^p$ uniqueness of non-symmetric diffusion operators with singular drift coefficients. I: The finite-dimensional case”, J. Funct. Anal., 173:2 (2000), 328–342 | DOI | MR | Zbl

[97] M. Kolb, “On the strong uniqueness of some finite dimensional Dirichlet operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11:2 (2008), 279–293 | DOI | MR | Zbl

[98] V. Liskevich, “On the uniqueness problem for Dirichlet operators”, J. Funct. Anal., 162:1 (1999), 1–13 | DOI | MR | Zbl

[99] V. I. Bogachev, M. Röckner, “On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds”, Sb. Math., 194:7 (2003), 969–978 | DOI | MR | Zbl

[100] L. M. Wu, Y. Zhang, “A new topological approach to the $L^\infty$-uniqueness of operators and the $L^1$-uniqueness of Fokker–Planck equations”, J. Funct. Anal., 241:2 (2006), 557–610 | DOI | MR | Zbl

[101] G. Metafune, D. Pallara, A. Rhandi, “Global regularity of invariant measures”, J. Funct. Anal., 223:2 (2005), 396–424 | DOI | MR | Zbl

[102] X.-D. Li, “Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds”, J. Math. Pures Appl. (9), 84:10 (2005), 1295–1361 | DOI | MR | Zbl

[103] V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic equations for measures: regularity and global bounds of densities”, J. Math. Pures Appl. (9), 85:6 (2006), 743–757 | DOI | MR | Zbl

[104] A.-B. Cruzeiro, P. Malliavin, “Nonperturbative construction of invariant measure through confinement by curvature”, J. Math. Pures Appl. (9), 77:6 (1998), 527–537 | MR | Zbl

[105] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, Dokl. Math., 79:3 (2009), 329–334 | DOI | MR | Zbl

[106] E. Nualart, “Exponential divergence estimates and heat kernel tail”, C. R. Math. Acad. Sci. Paris, 338:1 (2004), 77–80 | DOI | MR | Zbl

[107] P. Malliavin, E. Nualart, “Density minoration of a strongly non-degenerated random variable”, J. Funct. Anal., 256:12 (2009), 4197–4214 | DOI | MR | Zbl

[108] V. I. Bogachev, E. Mayer-Wolf, “Absolutely continuous flows generated by Sobolev class vector fields in finite and infinite dimensions”, J. Funct. Anal., 167:1 (1999), 1–68 | DOI | MR | Zbl

[109] M. Scheutzow, H. von Weizsäcker, “Which moments of a logarithmic derivative imply quasiinvariance?”, Doc. Math., 3 (1998), 261–272 | MR | Zbl

[110] D. W. Stroock, S. R. S. Varadhan, Multidimensional diffusion processes, Grundlehren Math. Wiss., 233, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[111] W. Stannat, “Time-dependent diffusion operators on $L^1$”, J. Evol. Equ., 4:4 (2004), 463–495 | DOI | MR | Zbl

[112] N. V. Krylov, Controlled diffusion processes, Appl. Math., 14, Springer-Verlag, New York–Berlin, 1980 | DOI | MR | MR | Zbl | Zbl

[113] E. B. Fabes, C. E. Kenig, “Examples of singular parabolic measures and singular transition probability densities”, Duke Math. J., 48:4 (1981), 845–856 | DOI | MR | Zbl

[114] M. V. Safonov, “An example of a diffusion process with the singular distribution at a fixed moment”, Abstracts of Communications of the Third International Vilnius Conference on Probability Theory and Mathematical Statistics, Vol. II, Vilnius, 1981, 133–134

[115] N. I. Portenko, Generalized diffusion processes, Transl. Math. Monogr., 83, Amer. Math. Soc., Providence, RI, 1990 | MR | MR | Zbl | Zbl

[116] P. Cattiaux, C. Léonard, “Minimization of the Kullback information of diffusion processes”, Ann. Inst. H. Poincaré Probab. Statist., 30:1 (1994), 83–132 ; P. Cattiaux, C. Léonard, “Correction to: ‘Minimization of the Kullback information of diffusion processes’ ”, Ann. Inst. H. Poincaré Probab. Statist., 31:4 (1995), 705–707 | MR | Zbl | MR | Zbl

[117] G. Metafune, D. Pallara, A. Rhandi, “Global properties of transition probabilities of singular diffusions”, Teoriya veroyatn. i ee primen., 54:1 (2009), 116–148

[118] T. J. Lyons, W. A. Zheng, “Diffusion processes with nonsmooth diffusion coefficients and their density functions”, Proc. Roy. Soc. Edinburgh Sect. A, 115:3–4 (1990), 231–242 | MR | Zbl

[119] O. A. Ladyženskaja, V. A. Solonnikov, N. M. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[120] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publ., River Edge, NJ, 1996 | MR | Zbl

[121] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progr. Nonlinear Differential Equations Appl., 16, Birkhäuser, Basel, 1995 | MR | Zbl

[122] S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei, Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, Oper. Theory Adv. Appl., 152, Birkhäuser, Basel, 2004 | MR | Zbl

[123] F. O. Porper, S. D. Eidel'man, “Two-sided estimates of fundamental solutions of second-order parabolic equations, and some applications”, Russian Math. Surveys, 39:3 (1984), 119–178 | DOI | MR | Zbl

[124] F. O. Porper, S. D. Eidel'man, “Properties of solutions of second-order parabolic equations with lower-order terms”, Trans. Moscow Math. Soc., 1993, 101–137 | MR | Zbl

[125] S. J. Sheu, “Some estimates of the transition density of a nondegenerate diffusion Markov process”, Ann. Probab., 19:2 (1991), 538–561 | DOI | MR | Zbl

[126] L. Escauriaza, “Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form”, Comm. Partial Differential Equations, 25:5–6 (2000), 821–845 | DOI | MR | Zbl

[127] W. Arendt, G. Metafune, D. Pallara, “Gaussian estimates for elliptic operators with unbounded drift”, J. Math. Anal. Appl., 338:1 (2008), 505–517 | DOI | MR | Zbl

[128] S. Fornaro, N. Fusco, G. Metafune, D. Pallara, “Sharp upper bounds for the density of some invariant measures”, Proc. Roy. Soc. Edinburgh Sect. A, 139:6 (2009), 1145–1161 | DOI

[129] C. Spina, “Kernel estimates for a class of Kolmogorov semigroups”, Arch. Math. (Basel), 91:3 (2008), 265–279 | DOI | MR | Zbl

[130] V. N. Denisov, “On the behaviour of solutions of parabolic equations for large values of time”, Russian Math. Surveys, 60:4 (2005), 721–790 | DOI | MR | Zbl

[131] D. G. Aronson, J. Serrin, “Local behavior of solutions of quasilinear parabolic equations”, Arch. Ration. Mech. Anal., 25:2 (1967), 81–122 | DOI | MR | Zbl

[132] J. Moser, “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math., 17:1 (1964), 101–134 ; J. Moser, “Correction to: ‘A Harnack inequality for parabolic differential equations’ ”, Comm. Pure Appl. Math., 20:1 (1967), 231–236 | DOI | MR | Zbl | MR | Zbl

[133] S. V. Shaposhnikov, “Nizhnie otsenki plotnostei reshenii parabolicheskikh uravnenii dlya mer”, Dokl. RAN, 429:5 (2009), 600–604

[134] V. I. Bogachev, G. Da Prato, M. Röckner, “Fokker–Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces”, J. Funct. Anal., 256:4 (2009), 1269–1298 | DOI | MR | Zbl

[135] V. I. Bogachev, G. Da Prato, M. Röckner, “Infinite dimensional Kolmogorov operators with time dependent drift coefficients”, Dokl. Math., 77:2 (2008), 276–280 | DOI | MR | Zbl

[136] G. Da Prato, Kolmogorov equations for stochastic PDEs, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2004 | MR | Zbl

[137] Dokl. Math., 80:3 (2009), 785–789

[138] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | MR | Zbl | Zbl

[139] S. Assing, R. Manthey, “Invariant measures for stochastic heat equations with unbounded coefficients”, Stochastic Process. Appl., 103:2 (2003), 237–256 | DOI | MR | Zbl

[140] Z. Brzeźniak, Y. Li, “Asymptotic compactness and absorbing sets for 2D stochastic Navier–Stokes equations on some unbounded domains”, Trans. Amer. Math. Soc., 358:12 (2006), 5587–5629 | DOI | MR | Zbl

[141] S. Cerrai, M. Freidlin, “Averaging principle for a class of stochastic reaction-diffusion equations”, Probab. Theory Related Fields, 144:1–2 (2009), 137–177 | DOI | MR | Zbl

[142] A. Chojnowska-Michalik, “Transition semigroups for stochastic semilinear equations on Hilbert spaces”, Dissertationes Math. (Rozprawy Mat.), 2001, no. 396 | MR | Zbl

[143] G. Da Prato, A. Debussche, “Ergodicity for the 3D stochastic Navier–Stokes equations”, J. Math. Pures Appl. (9), 82:8 (2003), 877–947 | DOI | MR | Zbl

[144] W. E, J. C. Mattingly, Ya. Sinai, “Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation”, Comm. Math. Phys., 224:1 (2001), 83–106 | DOI | MR | Zbl

[145] J.-P. Eckmann, M. Hairer, “Invariant measures for stochastic partial differential equations in unbounded domains”, Nonlinearity, 14:1 (2001), 133–151 | DOI | MR | Zbl

[146] A. Es-Sarhir, W. Stannat, “Invariant measures for semilinear SPDE's with local Lipschitz drift coefficients and applications”, J. Evol. Equ., 8:1 (2008), 129–154 | DOI | MR | Zbl

[147] F. Flandoli, Regularity theory and stochastic flows for parabolic SPDEs, Stochastics Monographs, 9, Gordon and Breach, Yverdon, 1995 | MR | Zbl

[148] B. Goldys, B. Maslowski, “Lower estimates of transition densities and bounds on exponential ergodicity for stochastic PDE's”, Ann. Probab., 34:4 (2006), 1451–1496 | DOI | MR | Zbl

[149] M. Hairer, J. C. Mattingly, “Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations”, Ann. Probab., 36:6 (2008), 2050–2091 | DOI | MR | Zbl

[150] B. Maslowski, J. Seidler, “Invariant measures for nonlinear SPDE's: uniqueness and stability”, Arch. Math. (Brno), 34:1 (1998), 153–172 | MR | Zbl

[151] M. Röckner, F.-Y. Wang, “Concentration of invariant measures for stochastic generalized porous media equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10:3 (2007), 397–409 | DOI | MR | Zbl

[152] A. Shirikyan, “Qualitative properties of stationary measures for three-dimensional Navier–Stokes equations”, J. Funct. Anal., 249:2 (2007), 284–306 | DOI | MR | Zbl

[153] S. Albeverio, Yu. Kondrat'ev, T. Pazurek, M. Röckner, “Existence and a priori estimates for Euclidean Gibbs states”, Trans. Moscow Math. Soc., 2006, 1–85 | DOI | MR | Zbl

[154] S. Albeverio, Yu. G. Kondratiev, M. Röckner, T. V. Tsikalenko, “A priori estimates for symmetrizing measures and their applications to Gibbs states”, J. Funct. Anal., 171:2 (2000), 366–400 | DOI | MR | Zbl

[155] P. Cattiaux, S. Roelly, H. Zessin, “Une approche gibbsienne des diffusions browniennes infini-dimensionnelles”, Probab. Theory Related Fields, 104:2 (1996), 147–179 | DOI | MR | Zbl

[156] J. Fritz, “Stationary measures of stochastic gradient systems, infinite lattice models”, Z. Wahrscheinlichkeitstheor. verw. Geb., 59:4 (1982), 479–490 | DOI | MR | Zbl

[157] J. Fritz, T. Funaki, J. L. Lebowitz, “Stationary states of random Hamiltonian systems”, Probab. Theory Related Fields, 99:2 (1994), 211–236 | DOI | MR | Zbl

[158] R. A. Holley, D. W. Stroock, “In one and two dimensions, every stationary measure for a stochastic Ising model is a Gibbs state”, Comm. Math. Phys., 55:1 (1977), 37–45 | DOI | MR

[159] M. Namiki, Stochastic quantization, Lecture Notes in Phys. New Ser. m Monogr., 9, Springer-Verlag, Berlin, 1992 | DOI | MR

[160] P.-L. Chow, R. Z. Khasminskii, “Stationary solutions of nonlinear stochastic evolution equations”, Stochastic Anal. Appl., 15:5 (1997), 671–699 | DOI | MR | Zbl

[161] G. Leha, G. Ritter, “Lyapunov-type conditions for stationary distributions of diffusion processes in Hilbert spaces”, Stochastics, 48:3–4 (1994), 195–225 | DOI | MR | Zbl

[162] G. Leha, G. Ritter, A. Wakolbinger, “An improved Lyapunov-function approach to the behavior of diffusion processes in Hilbert spaces”, Stochastic Anal. Appl., 15:1 (1997), 59–89 | DOI | MR | Zbl

[163] V. I. Bogachev, “Differentiable measures and the Malliavin calculus”, J. Math. Sci. (New York), 87:4 (1997), 3577–3731 | DOI | MR | Zbl

[164] S. Albeverio, M. Röckner, “Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms”, Probab. Theory Related Fields, 89:3 (1991), 347–386 | DOI | MR | Zbl

[165] H. Long, “Necessary and sufficient conditions for the symmetrizability of differential operators over infinite dimensional state spaces”, Forum Math., 12:2 (2000), 167–196 | DOI | MR | Zbl

[166] V. I. Bogachev, G. Da Prato, M. Röckner, “Parabolic equations for measures on infinite-dimensional spaces”, Dokl. Math., 78:1 (2008), 544–549 | DOI | MR

[167] L. Manca, “Kolmogorov equations for measures”, J. Evol. Equ., 8:2 (2008), 231–262 ; , 2007 arXiv: math/0703654 | DOI | MR | Zbl

[168] V. I. Bogachev, G. Da Prato, M. Röckner, “Invariant measures of generalized stochastic porous medium equations”, Dokl. Math., 69:3 (2004), 321–325 | MR | Zbl

[169] V. Barbu, V. I. Bogachev, G. Da Prato, M. Röckner, “Weak solutions to the stochastic porous media equation via Kolmogorov equations: The degenerate case”, J. Funct. Anal., 237:1 (2006), 54–75 | DOI | MR | Zbl

[170] A. Agrachev, S. Kuksin, A. Sarychev, A. Shirikyan, “On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations”, Ann. Inst. H. Poincaré Probab. Statist., 43:4 (2007), 399–415 | DOI | MR | Zbl

[171] V. I. Bogachev, G. Da Prato, M. Röckner, “Regularity of invariant measures for a class of perturbed Ornstein–Uhlenbeck operators”, NoDEA Nonlinear Differential Equations Appl., 3:2 (1996), 261–268 | DOI | MR | Zbl

[172] G. Da Prato, A. Debussche, “Absolute continuity of the invariant measures for some stochastic PDEs”, J. Statist. Phys., 115:1–2 (2004), 451–468 | DOI | MR | Zbl

[173] G. Da Prato, A. Debussche, B. Goldys, “Some properties of invariant measures of non symmetric dissipative stochastic systems”, Probab. Theory Related Fields, 123:3 (2002), 355–380 | DOI | MR | Zbl

[174] A. Es-Sarhir, “Sobolev regularity of invariant measures for generalized Ornstein–Uhlenbeck operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:4 (2006), 595–606 | DOI | MR | Zbl

[175] B. Gaveau, J.-M. Moulinier, “Régularité des mesures et perturbations stochastiques de champs de vecteurs sur des espaces de dimension infinie”, Publ. Res. Inst. Math. Sci., 21:3 (1985), 593–616 | DOI | MR | Zbl

[176] M. Hino, “Existence of invariant measures for diffusion processes on a Wiener space”, Osaka J. Math., 35:3 (1998), 717–734 | MR | Zbl

[177] N. A. Tolmachev, “On the smoothness and singularity of invariant measures and transition probabilities of infinite-dimensional diffusions”, Theory Probab. Appl., 43:4 (1999), 655–664 | DOI | MR | Zbl

[178] I. Shigekawa, “Existence of invariant measures of diffusions on an abstract Wiener space”, Osaka J. Math., 24:1 (1987), 37–59 | MR | Zbl

[179] A. F. Ramírez, “Relative entropy and mixing properties of infinite dimensional diffusions”, Probab. Theory Related Fields, 110:3 (1998), 369–395 | DOI | MR | Zbl

[180] A. F. Ramírez, “Uniqueness of invariant product measures for elliptic infinite dimensional diffusions and particle spin systems”, ESAIM Probab. Statist., 6 (2002), 147–155 | DOI | MR | Zbl

[181] A. F. Ramirez, S. R. S. Varadhan, “Relative entropy and mixing properties of interacting particle systems”, J. Math. Kyoto Univ., 36:4 (1996), 869–875 | MR | Zbl

[182] R. Holley, D. Stroock, “Diffusions on an infinite dimensional torus”, J. Funct. Anal., 42:1 (1981), 29–63 | DOI | MR | Zbl

[183] D. Bakry, M. Ledoux, “Lévy–Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator”, Invent. Math., 123:2 (1996), 259–281 | DOI | MR | Zbl

[184] V. Liskevich, M. Röckner, “Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27:1 (1998), 69–91 | MR | Zbl

[185] J. M. A. M. van Neerven, “Second quantization and the $L^p$-spectrum of nonsymmetric Ornstein–Uhlenbeck operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:3 (2005), 473–495 | DOI | MR | Zbl