Mots-clés : elliptic equation, parabolic equation
@article{RM_2009_64_6_a1,
author = {V. I. Bogachev and N. V. Krylov and M. R\"ockner},
title = {Elliptic and parabolic equations for measures},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {973--1078},
year = {2009},
volume = {64},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_6_a1/}
}
TY - JOUR AU - V. I. Bogachev AU - N. V. Krylov AU - M. Röckner TI - Elliptic and parabolic equations for measures JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 973 EP - 1078 VL - 64 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2009_64_6_a1/ LA - en ID - RM_2009_64_6_a1 ER -
V. I. Bogachev; N. V. Krylov; M. Röckner. Elliptic and parabolic equations for measures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 6, pp. 973-1078. http://geodesic.mathdoc.fr/item/RM_2009_64_6_a1/
[1] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 ; A. N. Kolmogorov, “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–41 | DOI | MR | Zbl
[2] A. N. Kolmogoroff, “Zur Umkehrbarkeit der statistischen Naturgesetze”, Math. Ann., 113:1 (1937), 766–772 ; A. N. Kolmogorov, “Ob obratimosti statisticheskikh zakonov prirody”, Teoriya veroyatnostei i matematicheskaya statistika. Izbrannye trudy, Nauka, M., 1986, 197–204 | DOI | MR | Zbl | MR | Zbl
[3] V. I. Bogachev, M. Röckner, “Hypoellipticity and invariant measures for infinite dimensional diffusions”, C. R. Acad. Sci. Paris Sér. I Math., 318:6 (1994), 553–558 | MR | Zbl
[4] V. I. Bogachev, M. Röckner, “Regularity of invariant measures on finite and infinite dimensional spaces and applications”, J. Funct. Anal., 133:1 (1995), 168–223 | DOI | MR | Zbl
[5] V. I. Bogachev, N. Krylov, M. Röckner, “Regularity of invariant measures: the case of non-constant diffusion part”, J. Funct. Anal., 138:1 (1996), 223–242 | DOI | MR | Zbl
[6] V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic regularity and essential self-adjointness of Dirichlet operators on $\mathbb{R}^{n}$”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24:3 (1997), 451–461 | MR | Zbl
[7] S. Albeverio, V. Bogachev, M. Röckner, “On uniqueness of invariant measures for finite- and infinite-dimensional diffusions”, Comm. Pure Appl. Math., 52:3 (1999), 325–362 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] V. Bogachev, M. Röckner, “A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts”, Theory Probab. Appl., 45:3 (2001), 363–378 ; Р’. Р�. БогачРμРІ, Рњ. РёкнРμСЂ, “РџРёСЃСЊРјРѕ РІ СЂРμдакцию: ‘РћР±РѕР±С‰РμРЅРёРμ С‚РμРѕСЂРμРјС‹ Хасьминского Рѕ СЃСѓС‰Рμствовании инвариантныС... РјРμСЂ для локально РёРЅС‚РμРіСЂРёСЂСѓРμРјС‹С... СЃРЅРѕСЃРѕРІ’ ”, РўРμРѕСЂРёСЏ РІРμроятн. Рё РμРμ РїСЂРёРјРμРЅ., 46:3 (2001), 600 | DOI | MR | MR | Zbl
[9] V. I. Bogachev, N. V. Krylov, M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11–12 (2001), 2037–2080 | DOI | MR | Zbl
[10] V. I. Bogachev, M. Röckner, “Elliptic equations for measures on infinite dimensional spaces and applications”, Probab. Theory Related Fields, 120:4 (2001), 445–496 | DOI | MR | Zbl
[11] V. I. Bogachev, M. Röckner, W. Stannat, “Uniqueness of invariant measures and essential $m$-dissipativity of diffusion operators on $L^1$”, Infinite dimensional stochastic analysis (Amsterdam, 1999), Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000, 39–54 | MR | Zbl
[12] V. I. Bogachev, M. Rockner, W. Stannat, “Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions”, Sb. Math., 193:7–8 (2002), 945–976 | DOI | MR | Zbl
[13] A. I. Kirillov, “Two mathematical problems of canonical quantization. I”, Theoret. Math. Phys., 87:1 (1991), 345–353 ; “II”, 87:2 (1991), 163–172 | DOI | DOI | DOI | DOI | MR | MR
[14] “II”, 87, no. 2, 1991, 447–454 ; “III: СтоС...астичРμская РјРμС...аника вакуума”, 91, No 3, 1992, 377–395 | DOI | DOI | DOI | DOI | MR | MR
[15] “III: Stochastic vacuum mechanics”, 91, no. 3, 1992, 591–603 ; “IV”, 93, No 2, 1992, 249–263 | DOI | DOI | DOI | DOI | MR | MR
[16] “IV”, 93, no. 2, 1992, 1251–1261 | DOI | DOI | DOI | DOI | MR | MR
[17] A. I. Kirillov, “Infinite-dimensional analysis and quantum theory as semimartingale calculus”, Russian Math. Surveys, 49:3 (1994), 43–95 | DOI | MR | Zbl
[18] A. I. Kirillov, “Field of sine-Gordon type in spacetime of arbitrary dimension: Existence of the Nelson measure”, Theoret. Math. Phys., 98:1 (1994), 8–19 ; “РџРѕР»Рμ типа sin-Gordon РІ пространствРμ-РІСЂРμРјРμРЅРё произвольноРNo размРμрности. II: СтоС...астичРμСЃРєРѕРμ квантованиРμ”, РўРњР¤, 105:2 (1995), 179–197 | DOI | DOI | MR | MR | Zbl | Zbl
[19] “Sine-Gordon type field in spacetime of arbitrary dimension. II: Stochastic quantization”, Theoret. Math. Phys., 105:2 (1995), 1329–1345 | DOI | DOI | MR | MR | Zbl | Zbl
[20] A. I. Kirillov, “On the reconstruction of measures from their logarithmic derivatives”, Izv. Math., 59:1 (1995), 121–139 | DOI | MR | Zbl
[21] Z. M. Ma, M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, Universitext, Springer-Verlag, Berlin, 1992 | MR | Zbl
[22] V. I. Bogachev, G. Da Prato, M. Röckner, “Existence of solutions to weak parabolic equations for measures”, Proc. London Math. Soc. (3), 88:3 (2004), 753–774 | DOI | MR | Zbl
[23] V. I. Bogachev, G. Da Prato, M. Röckner, “On parabolic equations for measures”, Comm. Partial Differential Equations, 33:1–3 (2008), 397–418 | DOI | MR | Zbl
[24] V. I. Bogachev, G. Da Prato, M. Röckner, W. Stannat, “Uniqueness of solutions to weak parabolic equations for measures”, Bull. Lond. Math. Soc., 39:4 (2007), 631–640 | DOI | MR | Zbl
[25] V. I. Bogachev, M. Rockner, S. V. Shaposhnikov, “Global regularity and bounds for solutions of parabolic equations for probability measures”, Theory Probab. Appl., 50:4 (2006), 561–581 | DOI | MR | Zbl
[26] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Estimates of densities of stationary distributions and transition probabilities of diffusion processes”, Theory Probab. Appl., 52:2 (2008), 209–236 | DOI | MR | Zbl
[27] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Positive densities of transition probabilities of diffusion processes”, Theory Probab. Appl., 53:2 (2009), 194–215 | DOI
[28] V. I. Bogachev, M. Röckner, F.-Y. Wang, “Elliptic equations for invariant measures on finite and infinite dimensional manifolds”, J. Math. Pures Appl. (9), 80:2 (2001), 177–221 | DOI | MR | Zbl
[29] V. I. Bogachev, M. Röckner, F.-Y. Wang, “Invariance implies Gibbsian: some new results”, Comm. Math. Phys., 248:2 (2004), 335–355 | DOI | MR | Zbl
[30] V. I. Bogachev, Differentsiruemye mery i ischislenie Mallyavena, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008
[31] P. Sjögren, “On the adjoint of an elliptic linear differential operator and its potential theory”, Ark. Mat., 11:1–2 (1973), 153–165 | DOI | MR | Zbl
[32] A. Bensoussan, Perturbation methods in optimal control, Wiley/Gauthier-Villars Series in Modern Applied Mathematics, Wiley, Chichester; Gauthier-Villars, Montrouge, 1988 | MR | Zbl
[33] C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren Math. Wiss., 130, Springer-Verlag, New York, 1966 | DOI | MR | Zbl
[34] S. V. Shaposhnikov, “On Morrey's estimate of the Sobolev norms of solutions of elliptic equations”, Math. Notes, 79:3–4 (2006), 413–430 | DOI | MR | Zbl
[35] S. V. Shaposhnikov, “On interior estimates of the Sobolev norms of solutions of elliptic equations”, Math. Notes, 83:1–2 (2008), 285–289 | DOI | MR | Zbl
[36] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems. Vol. I, Scripta Series in Mathematics, Winston, Washington, DC; Halsted Press, New York–Toronto–London, 1978 ; Vol. II, Scripta Series in Mathematics, Winston, Washington, DC; Halsted Press, New York–Toronto–London, 1979 | MR | Zbl | MR | Zbl | MR | Zbl
[37] S. V. Shaposhnikov, “Positiveness of invariant measures of diffusion processes”, Dokl. Math., 76:1 (2007), 533–538 | DOI | MR | Zbl
[38] W. Littman, “A strong maximum principle for weakly $L$-subharmonic functions”, J. Math. Mech., 8 (1959), 761–770 | MR | Zbl
[39] P. Bauman, “Positive solutions of elliptic equations in nondivergent form and their adjoints”, Ark. Mat., 22:1–2 (1984), 153–173 | DOI | MR | Zbl
[40] L. Escauriaza, “Weak type-$(1,1)$ inequalities and regularity properties of adjoint and normalized adjoint solutions to linear nondivergence form operators with VMO coefficients”, Duke Math. J., 74:1 (1994), 177–201 | DOI | MR | Zbl
[41] N. V. Krylov, “Parabolic and elliptic equations with VMO coefficients”, Comm. Partial Differential Equations, 32:1–3 (2007), 453–475 | DOI | MR | Zbl
[42] N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, Grad. Stud. Math., 96, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[43] N. V. Krylov, “Second-order elliptic equations with variably partially VMO coefficients”, J. Funct. Anal., 257:6 (2009), 1695–1712 ; , 2008 arXiv: 0807.0926 | DOI | MR | Zbl
[44] T. Jin, V. Maz'ya, J. Van Schaftingen, “Pathological solutions to elliptic problems in divergence form with continuous coefficients”, C. R. Math. Acad. Sci. Paris, 347:13–14 (2009), 773–778 | DOI | MR
[45] A. Yu. Veretennikov, É. Pardoux, “On the smoothness of an invariant measure of a Markov chain with respect to a parameter”, Dokl. Math., 61:1 (2000), 31–33 | MR | Zbl
[46] R. Z. Khas'minskii, “Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations”, Theory Probab. Appl., 5:2 (1960), 179–196 | DOI | MR | Zbl | Zbl
[47] R. Z. Has'minskii, Stochastic stability of differential equations, Monogr. Textbooks Mech. Solids Fluids: Mech. Anal., 7, Sijthoff and Noordhoff, Germantown, MD, 1980 | MR | MR | Zbl | Zbl
[48] N. S. Trudinger, “Linear elliptic operators with measurable coefficients”, Ann. Scuola Norm. Sup. Pisa (3), 27 (1973), 265–308 | MR | Zbl
[49] N. S. Trudinger, “Maximum principles for linear, non-uniformly elliptic operators with measurable coefficients”, Math. Z., 156:3 (1977), 291–301 | DOI | MR | Zbl
[50] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin–New York, 1977 | MR | MR | Zbl | Zbl
[51] A. Yu. Veretennikov, “On polynomial mixing bounds for stochastic differential equations”, Stochastic Process. Appl., 70:1 (1997), 115–127 | DOI | MR | Zbl
[52] V. I. Bogachev, M. Röckner, T. S. Zhang, “Existence and uniqueness of invariant measures: an approach via sectorial forms”, Appl. Math. Optim., 41:1 (2000), 87–109 | DOI | MR | Zbl
[53] V. A. Liskevich, Yu. A. Semenov, “Dirichlet operators: a priori estimates and the uniqueness problem”, J. Funct. Anal., 109:1 (1992), 199–213 | DOI | MR | Zbl
[54] W. Stannat, “(Nonsymmetric) Dirichlet operators on $L^1$: existence, uniqueness and associated Markov processes”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 99–140 | MR | Zbl
[55] M. Röckner, T. S. Zhang, “Uniqueness of generalized Schrödinger operators. Part II”, J. Funct. Anal., 119:2 (1994), 455–467 | DOI | MR | Zbl
[56] E. Schrödinger, “Über die Umkehrung der Naturgesetze”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1931, no. 8–9, 144–153 | Zbl
[57] U. G. Haussmann, É. Pardoux, “Time reversal of diffusions”, Ann. Probab., 14:4 (1986), 1188–1205 | DOI | MR | Zbl
[58] H. Föllmer, “Random fields and diffusion processes”, École d'Été de Probabilités de Saint-Flour XV–XVII, Lect. Notes in Math., 1362, Springer, Berlin, 1988, 101–203 | DOI | MR | Zbl
[59] A. Millet, D. Nualart, M. Sanz, “Integration by parts and time reversal for diffusion processes”, Ann. Probab., 17:1 (1989), 208–238 | DOI | MR | Zbl
[60] A. Millet, D. Nualart, M. Sanz, “Time reversal for infinite-dimensional diffusions”, Probab. Theory Relat. Fields, 82:3 (1989), 315–347 | DOI | MR | Zbl
[61] P. Echeverría, “A criterion for invariant measures of Markov processes”, Z. Wahrscheinlichkeitstheor. verw. Geb., 61:1 (1982), 1–16 | DOI | MR | Zbl
[62] A. Albanese, L. Lorenzi, E. Mangino, “$L^p$-uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R}^N$”, J. Funct. Anal., 256:4 (2009), 1238–1257 | DOI | MR | Zbl
[63] A. A. Albanese, E. M. Mangino, “Cores for Feller semigroups with an invariant measure”, J. Differential Equations, 225:1 (2006), 361–377 ; A. A. Albanese, E. M. Mangino, “Corrigendum to ‘Cores for Feller semigroups with an invariant measure’ ”, J. Differential Equations, 244:11 (2008), 2980–2982 | DOI | MR | Zbl | DOI | MR | Zbl
[64] R. N. Bhattacharya, “Criteria for recurrence and existence of invariant measures for multidimensional diffusions”, Ann. Probab., 6:4 (1978), 541–553 ; R. N. Bhattacharya, “Correction Note: Correction to ‘Criteria for recurrence and existence of invariant measures for multidimensional diffusions’ ”, Ann. Probab., 8:6 (1980), 1194–1195 | DOI | MR | Zbl | MR | Zbl
[65] R. N. Bhattacharya, S. Ramasubramanian, “Recurrence and ergodicity of diffusions”, J. Multivariate Anal., 12:1 (1982), 95–122 | DOI | MR | Zbl
[66] Y. Miyahara, “Invariant measures of ultimately bounded stochastic processes”, Nagoya Math. J., 49 (1973), 149–153 | MR | Zbl
[67] M. Zakai, “A Lyapunov criterion for the existence of stationary probability distributions for systems perturbed by noise”, SIAM J. Control, 7:3 (1969), 390–397 | DOI | MR | Zbl
[68] L. Arnold, W. Kliemann, “Qualitative theory of stochastic systems”, Probabilistic analysis and related topics, Vol. 3, Academic Press, New York, 1983, 1–79 | MR | Zbl
[69] A. A. Borovkov, Ergodicity and stability of stochastic processes, Wiley, Chichester, 1998 | MR | MR | Zbl | Zbl
[70] M. Cohen de Lara, “Geometric and symmetry properties of a nondegenerate diffusion process”, Ann. Probab., 23:4 (1995), 1557–1604 | DOI | MR | Zbl
[71] S. A. Klokov, A. Yu. Veretennikov, “On subexponential mixing rate for Markov processes”, Theory Probab. Appl., 49:1 (2005), 110–122 | DOI | MR | Zbl
[72] H. J. Kushner, Stochastic stability and control, Math. Sci. Eng., 33, Academic Press, New York, 1967 ; G. Dzh. Kushner, Stokhasticheskaya ustoichivost i upravlenie, Mir, M., 1969 | MR | Zbl
[73] S. Meyn, R. L. Tweedie, Markov chains and stochastic stability, Prologue by Peter W. Glynn, 2nd ed., Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl
[74] É. Pardoux, A. Yu. Veretennikov, “On the Poisson equation and diffusion approximation. I”, Ann. Probab., 29:3 (2001), 1061–1085 ; “II”, 31:3 (2003), 1166–1192 ; “III”, 33:3 (2005), 1111–1133 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[75] R. G. Pinsky, Positive harmonic functions and diffusion, Cambridge Stud. Adv. Math., 45, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[76] V. M. Shurenkov, Ergodicheskie protsessy Markova, Nauka, M., 1989 | MR | Zbl
[77] A. V. Skorokhod, Asymptotic methods in the theory of stochastic differential equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1989 | MR | MR | Zbl | Zbl
[78] A. Yu. Veretennikov, “On polynomial mixing and convergence rate for stochastic difference and differential equations”, Theory Probab. Appl., 44:2 (1999), 361–374 | DOI | MR | Zbl
[79] G. Da Prato, A. Lunardi, “On a class of self-adjoint elliptic operators in $L^2$ spaces with respect to invariant measures”, J. Differential Equations, 234:1 (2007), 54–79 | DOI | MR | Zbl
[80] B. Farkas, A. Lunardi, “Maximal regularity for Kolmogorov operators in $L^2$ spaces with respect to invariant measures”, J. Math. Pures Appl. (9), 86:4 (2006), 310–321 | DOI | MR | Zbl
[81] L. Lorenzi, M. Bertoldi, Analytical methods for Markov semigroups, Pure Appl. Math. (Boca Raton), 283, Chapman Hall/CRC, Boca Raton, FL, 2007 | MR | Zbl
[82] G. Metafune, D. Pallara, M. Wacker, “Compactness properties of Feller semigroups”, Studia Math., 153:2 (2002), 179–206 | DOI | MR | Zbl
[83] D. Bakry, “L'hypercontractivité et son utilisation en théorie des semigroupes”, Lectures on probability theory (Saint-Flour, 1992), Lecture Notes in Math., 1581, Springer, Berlin, 1994, 1–114 | DOI | MR | Zbl
[84] P. Cattiaux, A. Guillin, F.-Y. Wang, L. Wu, “Lyapunov conditions for super Poincaré inequalities”, J. Funct. Anal., 256:6 (2009), 1821–1841 | DOI | MR | Zbl
[85] Y. Fujita, “On a critical role of Ornstein–Uhlenbeck operators in the Poincaré inequality”, Differential Integral Equations, 19:12 (2006), 1321–1332 | MR
[86] M. Ledoux, “On an integral criterion for hypercontractivity of diffusion semigroups and extremal functions”, J. Funct. Anal., 105:2 (1992), 444–465 | DOI | MR | Zbl
[87] M. Röckner, F.-Y. Wang, “Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds”, Forum Math., 15:6 (2003), 893–921 | DOI | MR | Zbl
[88] S. V. Shaposhnikov, “The nonuniqueness of solutions to elliptic equations for probability measures”, Dokl. Math., 77:3 (2008), 401–403 | DOI | MR | Zbl
[89] S. V. Shaposhnikov, “On nonuniqueness of solutions to elliptic equations for probability measures”, J. Funct. Anal., 254:10 (2008), 2690–2705 | DOI | MR | Zbl
[90] V. V. Zhikov, “Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms”, Funct. Anal. Appl., 38:3 (2004), 173–183 | DOI | MR | Zbl
[91] S. R. S. Varadhan, Lectures on diffusion problems and partial differential equations, Tata Inst. Fund. Res. Lectures on Math. and Phys., 64, Tata Institute of Fundamental Research, Bombay, 1980 | MR | Zbl
[92] J. L. Doob, “Asymptotic properties of Markoff transitions probabilities”, Trans. Amer. Math. Soc., 63:3 (1948), 393–421 | DOI | MR | Zbl
[93] G. Da Prato, J. Zabczyk, Ergodicity for infinite-dimensional systems, London Math. Soc. Lecture Note Ser., 229, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[94] P. Cattiaux, M. Fradon, “Entropy, reversible diffusion processes, and Markov uniqueness”, J. Funct. Anal., 138:1 (1996), 243–272 | DOI | MR | Zbl
[95] A. Eberle, Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators, Lecture Notes in Math., 1718, Springer, Berlin, 1999 | DOI | MR | Zbl
[96] A. Eberle, “$L^p$ uniqueness of non-symmetric diffusion operators with singular drift coefficients. I: The finite-dimensional case”, J. Funct. Anal., 173:2 (2000), 328–342 | DOI | MR | Zbl
[97] M. Kolb, “On the strong uniqueness of some finite dimensional Dirichlet operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11:2 (2008), 279–293 | DOI | MR | Zbl
[98] V. Liskevich, “On the uniqueness problem for Dirichlet operators”, J. Funct. Anal., 162:1 (1999), 1–13 | DOI | MR | Zbl
[99] V. I. Bogachev, M. Röckner, “On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds”, Sb. Math., 194:7 (2003), 969–978 | DOI | MR | Zbl
[100] L. M. Wu, Y. Zhang, “A new topological approach to the $L^\infty$-uniqueness of operators and the $L^1$-uniqueness of Fokker–Planck equations”, J. Funct. Anal., 241:2 (2006), 557–610 | DOI | MR | Zbl
[101] G. Metafune, D. Pallara, A. Rhandi, “Global regularity of invariant measures”, J. Funct. Anal., 223:2 (2005), 396–424 | DOI | MR | Zbl
[102] X.-D. Li, “Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds”, J. Math. Pures Appl. (9), 84:10 (2005), 1295–1361 | DOI | MR | Zbl
[103] V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic equations for measures: regularity and global bounds of densities”, J. Math. Pures Appl. (9), 85:6 (2006), 743–757 | DOI | MR | Zbl
[104] A.-B. Cruzeiro, P. Malliavin, “Nonperturbative construction of invariant measure through confinement by curvature”, J. Math. Pures Appl. (9), 77:6 (1998), 527–537 | MR | Zbl
[105] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, Dokl. Math., 79:3 (2009), 329–334 | DOI | MR | Zbl
[106] E. Nualart, “Exponential divergence estimates and heat kernel tail”, C. R. Math. Acad. Sci. Paris, 338:1 (2004), 77–80 | DOI | MR | Zbl
[107] P. Malliavin, E. Nualart, “Density minoration of a strongly non-degenerated random variable”, J. Funct. Anal., 256:12 (2009), 4197–4214 | DOI | MR | Zbl
[108] V. I. Bogachev, E. Mayer-Wolf, “Absolutely continuous flows generated by Sobolev class vector fields in finite and infinite dimensions”, J. Funct. Anal., 167:1 (1999), 1–68 | DOI | MR | Zbl
[109] M. Scheutzow, H. von Weizsäcker, “Which moments of a logarithmic derivative imply quasiinvariance?”, Doc. Math., 3 (1998), 261–272 | MR | Zbl
[110] D. W. Stroock, S. R. S. Varadhan, Multidimensional diffusion processes, Grundlehren Math. Wiss., 233, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl
[111] W. Stannat, “Time-dependent diffusion operators on $L^1$”, J. Evol. Equ., 4:4 (2004), 463–495 | DOI | MR | Zbl
[112] N. V. Krylov, Controlled diffusion processes, Appl. Math., 14, Springer-Verlag, New York–Berlin, 1980 | DOI | MR | MR | Zbl | Zbl
[113] E. B. Fabes, C. E. Kenig, “Examples of singular parabolic measures and singular transition probability densities”, Duke Math. J., 48:4 (1981), 845–856 | DOI | MR | Zbl
[114] M. V. Safonov, “An example of a diffusion process with the singular distribution at a fixed moment”, Abstracts of Communications of the Third International Vilnius Conference on Probability Theory and Mathematical Statistics, Vol. II, Vilnius, 1981, 133–134
[115] N. I. Portenko, Generalized diffusion processes, Transl. Math. Monogr., 83, Amer. Math. Soc., Providence, RI, 1990 | MR | MR | Zbl | Zbl
[116] P. Cattiaux, C. Léonard, “Minimization of the Kullback information of diffusion processes”, Ann. Inst. H. Poincaré Probab. Statist., 30:1 (1994), 83–132 ; P. Cattiaux, C. Léonard, “Correction to: ‘Minimization of the Kullback information of diffusion processes’ ”, Ann. Inst. H. Poincaré Probab. Statist., 31:4 (1995), 705–707 | MR | Zbl | MR | Zbl
[117] G. Metafune, D. Pallara, A. Rhandi, “Global properties of transition probabilities of singular diffusions”, Teoriya veroyatn. i ee primen., 54:1 (2009), 116–148
[118] T. J. Lyons, W. A. Zheng, “Diffusion processes with nonsmooth diffusion coefficients and their density functions”, Proc. Roy. Soc. Edinburgh Sect. A, 115:3–4 (1990), 231–242 | MR | Zbl
[119] O. A. Ladyženskaja, V. A. Solonnikov, N. M. Ural'ceva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl
[120] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publ., River Edge, NJ, 1996 | MR | Zbl
[121] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progr. Nonlinear Differential Equations Appl., 16, Birkhäuser, Basel, 1995 | MR | Zbl
[122] S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei, Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, Oper. Theory Adv. Appl., 152, Birkhäuser, Basel, 2004 | MR | Zbl
[123] F. O. Porper, S. D. Eidel'man, “Two-sided estimates of fundamental solutions of second-order parabolic equations, and some applications”, Russian Math. Surveys, 39:3 (1984), 119–178 | DOI | MR | Zbl
[124] F. O. Porper, S. D. Eidel'man, “Properties of solutions of second-order parabolic equations with lower-order terms”, Trans. Moscow Math. Soc., 1993, 101–137 | MR | Zbl
[125] S. J. Sheu, “Some estimates of the transition density of a nondegenerate diffusion Markov process”, Ann. Probab., 19:2 (1991), 538–561 | DOI | MR | Zbl
[126] L. Escauriaza, “Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form”, Comm. Partial Differential Equations, 25:5–6 (2000), 821–845 | DOI | MR | Zbl
[127] W. Arendt, G. Metafune, D. Pallara, “Gaussian estimates for elliptic operators with unbounded drift”, J. Math. Anal. Appl., 338:1 (2008), 505–517 | DOI | MR | Zbl
[128] S. Fornaro, N. Fusco, G. Metafune, D. Pallara, “Sharp upper bounds for the density of some invariant measures”, Proc. Roy. Soc. Edinburgh Sect. A, 139:6 (2009), 1145–1161 | DOI
[129] C. Spina, “Kernel estimates for a class of Kolmogorov semigroups”, Arch. Math. (Basel), 91:3 (2008), 265–279 | DOI | MR | Zbl
[130] V. N. Denisov, “On the behaviour of solutions of parabolic equations for large values of time”, Russian Math. Surveys, 60:4 (2005), 721–790 | DOI | MR | Zbl
[131] D. G. Aronson, J. Serrin, “Local behavior of solutions of quasilinear parabolic equations”, Arch. Ration. Mech. Anal., 25:2 (1967), 81–122 | DOI | MR | Zbl
[132] J. Moser, “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math., 17:1 (1964), 101–134 ; J. Moser, “Correction to: ‘A Harnack inequality for parabolic differential equations’ ”, Comm. Pure Appl. Math., 20:1 (1967), 231–236 | DOI | MR | Zbl | MR | Zbl
[133] S. V. Shaposhnikov, “Nizhnie otsenki plotnostei reshenii parabolicheskikh uravnenii dlya mer”, Dokl. RAN, 429:5 (2009), 600–604
[134] V. I. Bogachev, G. Da Prato, M. Röckner, “Fokker–Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces”, J. Funct. Anal., 256:4 (2009), 1269–1298 | DOI | MR | Zbl
[135] V. I. Bogachev, G. Da Prato, M. Röckner, “Infinite dimensional Kolmogorov operators with time dependent drift coefficients”, Dokl. Math., 77:2 (2008), 276–280 | DOI | MR | Zbl
[136] G. Da Prato, Kolmogorov equations for stochastic PDEs, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2004 | MR | Zbl
[137] Dokl. Math., 80:3 (2009), 785–789
[138] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | MR | Zbl | Zbl
[139] S. Assing, R. Manthey, “Invariant measures for stochastic heat equations with unbounded coefficients”, Stochastic Process. Appl., 103:2 (2003), 237–256 | DOI | MR | Zbl
[140] Z. Brzeźniak, Y. Li, “Asymptotic compactness and absorbing sets for 2D stochastic Navier–Stokes equations on some unbounded domains”, Trans. Amer. Math. Soc., 358:12 (2006), 5587–5629 | DOI | MR | Zbl
[141] S. Cerrai, M. Freidlin, “Averaging principle for a class of stochastic reaction-diffusion equations”, Probab. Theory Related Fields, 144:1–2 (2009), 137–177 | DOI | MR | Zbl
[142] A. Chojnowska-Michalik, “Transition semigroups for stochastic semilinear equations on Hilbert spaces”, Dissertationes Math. (Rozprawy Mat.), 2001, no. 396 | MR | Zbl
[143] G. Da Prato, A. Debussche, “Ergodicity for the 3D stochastic Navier–Stokes equations”, J. Math. Pures Appl. (9), 82:8 (2003), 877–947 | DOI | MR | Zbl
[144] W. E, J. C. Mattingly, Ya. Sinai, “Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation”, Comm. Math. Phys., 224:1 (2001), 83–106 | DOI | MR | Zbl
[145] J.-P. Eckmann, M. Hairer, “Invariant measures for stochastic partial differential equations in unbounded domains”, Nonlinearity, 14:1 (2001), 133–151 | DOI | MR | Zbl
[146] A. Es-Sarhir, W. Stannat, “Invariant measures for semilinear SPDE's with local Lipschitz drift coefficients and applications”, J. Evol. Equ., 8:1 (2008), 129–154 | DOI | MR | Zbl
[147] F. Flandoli, Regularity theory and stochastic flows for parabolic SPDEs, Stochastics Monographs, 9, Gordon and Breach, Yverdon, 1995 | MR | Zbl
[148] B. Goldys, B. Maslowski, “Lower estimates of transition densities and bounds on exponential ergodicity for stochastic PDE's”, Ann. Probab., 34:4 (2006), 1451–1496 | DOI | MR | Zbl
[149] M. Hairer, J. C. Mattingly, “Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations”, Ann. Probab., 36:6 (2008), 2050–2091 | DOI | MR | Zbl
[150] B. Maslowski, J. Seidler, “Invariant measures for nonlinear SPDE's: uniqueness and stability”, Arch. Math. (Brno), 34:1 (1998), 153–172 | MR | Zbl
[151] M. Röckner, F.-Y. Wang, “Concentration of invariant measures for stochastic generalized porous media equations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10:3 (2007), 397–409 | DOI | MR | Zbl
[152] A. Shirikyan, “Qualitative properties of stationary measures for three-dimensional Navier–Stokes equations”, J. Funct. Anal., 249:2 (2007), 284–306 | DOI | MR | Zbl
[153] S. Albeverio, Yu. Kondrat'ev, T. Pazurek, M. Röckner, “Existence and a priori estimates for Euclidean Gibbs states”, Trans. Moscow Math. Soc., 2006, 1–85 | DOI | MR | Zbl
[154] S. Albeverio, Yu. G. Kondratiev, M. Röckner, T. V. Tsikalenko, “A priori estimates for symmetrizing measures and their applications to Gibbs states”, J. Funct. Anal., 171:2 (2000), 366–400 | DOI | MR | Zbl
[155] P. Cattiaux, S. Roelly, H. Zessin, “Une approche gibbsienne des diffusions browniennes infini-dimensionnelles”, Probab. Theory Related Fields, 104:2 (1996), 147–179 | DOI | MR | Zbl
[156] J. Fritz, “Stationary measures of stochastic gradient systems, infinite lattice models”, Z. Wahrscheinlichkeitstheor. verw. Geb., 59:4 (1982), 479–490 | DOI | MR | Zbl
[157] J. Fritz, T. Funaki, J. L. Lebowitz, “Stationary states of random Hamiltonian systems”, Probab. Theory Related Fields, 99:2 (1994), 211–236 | DOI | MR | Zbl
[158] R. A. Holley, D. W. Stroock, “In one and two dimensions, every stationary measure for a stochastic Ising model is a Gibbs state”, Comm. Math. Phys., 55:1 (1977), 37–45 | DOI | MR
[159] M. Namiki, Stochastic quantization, Lecture Notes in Phys. New Ser. m Monogr., 9, Springer-Verlag, Berlin, 1992 | DOI | MR
[160] P.-L. Chow, R. Z. Khasminskii, “Stationary solutions of nonlinear stochastic evolution equations”, Stochastic Anal. Appl., 15:5 (1997), 671–699 | DOI | MR | Zbl
[161] G. Leha, G. Ritter, “Lyapunov-type conditions for stationary distributions of diffusion processes in Hilbert spaces”, Stochastics, 48:3–4 (1994), 195–225 | DOI | MR | Zbl
[162] G. Leha, G. Ritter, A. Wakolbinger, “An improved Lyapunov-function approach to the behavior of diffusion processes in Hilbert spaces”, Stochastic Anal. Appl., 15:1 (1997), 59–89 | DOI | MR | Zbl
[163] V. I. Bogachev, “Differentiable measures and the Malliavin calculus”, J. Math. Sci. (New York), 87:4 (1997), 3577–3731 | DOI | MR | Zbl
[164] S. Albeverio, M. Röckner, “Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms”, Probab. Theory Related Fields, 89:3 (1991), 347–386 | DOI | MR | Zbl
[165] H. Long, “Necessary and sufficient conditions for the symmetrizability of differential operators over infinite dimensional state spaces”, Forum Math., 12:2 (2000), 167–196 | DOI | MR | Zbl
[166] V. I. Bogachev, G. Da Prato, M. Röckner, “Parabolic equations for measures on infinite-dimensional spaces”, Dokl. Math., 78:1 (2008), 544–549 | DOI | MR
[167] L. Manca, “Kolmogorov equations for measures”, J. Evol. Equ., 8:2 (2008), 231–262 ; , 2007 arXiv: math/0703654 | DOI | MR | Zbl
[168] V. I. Bogachev, G. Da Prato, M. Röckner, “Invariant measures of generalized stochastic porous medium equations”, Dokl. Math., 69:3 (2004), 321–325 | MR | Zbl
[169] V. Barbu, V. I. Bogachev, G. Da Prato, M. Röckner, “Weak solutions to the stochastic porous media equation via Kolmogorov equations: The degenerate case”, J. Funct. Anal., 237:1 (2006), 54–75 | DOI | MR | Zbl
[170] A. Agrachev, S. Kuksin, A. Sarychev, A. Shirikyan, “On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations”, Ann. Inst. H. Poincaré Probab. Statist., 43:4 (2007), 399–415 | DOI | MR | Zbl
[171] V. I. Bogachev, G. Da Prato, M. Röckner, “Regularity of invariant measures for a class of perturbed Ornstein–Uhlenbeck operators”, NoDEA Nonlinear Differential Equations Appl., 3:2 (1996), 261–268 | DOI | MR | Zbl
[172] G. Da Prato, A. Debussche, “Absolute continuity of the invariant measures for some stochastic PDEs”, J. Statist. Phys., 115:1–2 (2004), 451–468 | DOI | MR | Zbl
[173] G. Da Prato, A. Debussche, B. Goldys, “Some properties of invariant measures of non symmetric dissipative stochastic systems”, Probab. Theory Related Fields, 123:3 (2002), 355–380 | DOI | MR | Zbl
[174] A. Es-Sarhir, “Sobolev regularity of invariant measures for generalized Ornstein–Uhlenbeck operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:4 (2006), 595–606 | DOI | MR | Zbl
[175] B. Gaveau, J.-M. Moulinier, “Régularité des mesures et perturbations stochastiques de champs de vecteurs sur des espaces de dimension infinie”, Publ. Res. Inst. Math. Sci., 21:3 (1985), 593–616 | DOI | MR | Zbl
[176] M. Hino, “Existence of invariant measures for diffusion processes on a Wiener space”, Osaka J. Math., 35:3 (1998), 717–734 | MR | Zbl
[177] N. A. Tolmachev, “On the smoothness and singularity of invariant measures and transition probabilities of infinite-dimensional diffusions”, Theory Probab. Appl., 43:4 (1999), 655–664 | DOI | MR | Zbl
[178] I. Shigekawa, “Existence of invariant measures of diffusions on an abstract Wiener space”, Osaka J. Math., 24:1 (1987), 37–59 | MR | Zbl
[179] A. F. Ramírez, “Relative entropy and mixing properties of infinite dimensional diffusions”, Probab. Theory Related Fields, 110:3 (1998), 369–395 | DOI | MR | Zbl
[180] A. F. Ramírez, “Uniqueness of invariant product measures for elliptic infinite dimensional diffusions and particle spin systems”, ESAIM Probab. Statist., 6 (2002), 147–155 | DOI | MR | Zbl
[181] A. F. Ramirez, S. R. S. Varadhan, “Relative entropy and mixing properties of interacting particle systems”, J. Math. Kyoto Univ., 36:4 (1996), 869–875 | MR | Zbl
[182] R. Holley, D. Stroock, “Diffusions on an infinite dimensional torus”, J. Funct. Anal., 42:1 (1981), 29–63 | DOI | MR | Zbl
[183] D. Bakry, M. Ledoux, “Lévy–Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator”, Invent. Math., 123:2 (1996), 259–281 | DOI | MR | Zbl
[184] V. Liskevich, M. Röckner, “Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27:1 (1998), 69–91 | MR | Zbl
[185] J. M. A. M. van Neerven, “Second quantization and the $L^p$-spectrum of nonsymmetric Ornstein–Uhlenbeck operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:3 (2005), 473–495 | DOI | MR | Zbl