Mots-clés : billiards, optimal mass transfer
@article{RM_2009_64_5_a2,
author = {A. Yu. Plakhov},
title = {Scattering in billiards and problems of {Newtonian} aerodynamics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {873--938},
year = {2009},
volume = {64},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_5_a2/}
}
A. Yu. Plakhov. Scattering in billiards and problems of Newtonian aerodynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 5, pp. 873-938. http://geodesic.mathdoc.fr/item/RM_2009_64_5_a2/
[1] I. K. Harrison, G. G. Swinerd, “A free molecule aerodynamic investigation using multiple satellite analysis”, Planet. Space Sci., 44:2 (1996), 171–180 | DOI
[2] P. D. Fieseler, “A method for solar sailing in a low Earth orbit”, Acta Astronautica, 43:9–10 (1998), 531–541 | DOI
[3] K. Moe, M. M. Moe, “Gas-surface interactions and satellite drag coefficients”, Planet. Space Sci., 53:8 (2005), 793–801 | DOI
[4] I. Newton, Philosophiae naturalis principia mathematica, 1687 ; I. Newton, The mathematical principles of natural philosophy, Philosophical Library, New York, 1964 ; I. Nyuton, Matematicheskie nachala naturalnoi filosofii, Tip. M. M. Stasyulevicha, Petrograd, 1915–1916 | MR | Zbl | Zbl
[5] V. M. Tikhomirov, “Aerodinamicheskaya zadacha Nyutona”, Kvant, 1982, no. 5, 11–18 | MR
[6] F. Brock, V. Ferone, B. Kawohl, “A symmetry problem in the calculus of variations”, Calc. Var. Partial Differential Equations, 4:6 (1996), 593–599 | DOI | MR | Zbl
[7] D. Bucur, G. Buttazzo, Variational methods in shape optimization problems, Progr. Nonlinear Differential Equations Appl., 65, Birkhäuser, Boston, MA, 2005 | DOI | MR | Zbl
[8] G. Buttazzo, V. Ferone, B. Kawohl, “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173:1 (1995), 71–89 | DOI | MR | Zbl
[9] G. Buttazzo, B. Kawohl, “On Newton's problem of minimal resistance”, Math. Intelligencer, 15:4 (1993), 7–12 | DOI | MR | Zbl
[10] M. Comte, T. Lachand-Robert, “Newton's problem of the body of minimal resistance under a single-impact assumption”, Calc. Var. Partial Differential Equations, 12:2 (2001), 173–211 | DOI | MR | Zbl
[11] M. Comte, T. Lachand-Robert, “Existence of minimizers for Newton's problem of the body of minimal resistance under a single-impact assumption”, J. Anal. Math., 83:1 (2001), 313–335 | DOI | MR | Zbl
[12] M. Comte, T. Lachand-Robert, “Functions and domains having minimal resistance under a single-impact assumption”, SIAM J. Math. Anal., 34:1 (2002), 101–120 | DOI | MR | Zbl
[13] T. Lachand-Robert, E. Oudet, “Minimizing within convex bodies using a convex hull method”, SIAM J. Optim., 16:2 (2006), 368–379 | DOI | MR | Zbl
[14] T. Lachand-Robert, M. A. Peletier, “Newton's problem of the body of minimal resistance in the class of convex developable functions”, Math. Nachr., 226:1 (2001), 153–176 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] T. Lachand-Robert, M. A. Peletier, “An example of non-convex minimization and an application to Newton's problem of the body of least resistance”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18:2 (2001), 179–198 | DOI | MR | Zbl
[16] A. M. Legendre, Memoires de l'Académie royale de sciences, année 1786, Paris, 1788, 7–37
[17] M. Belloni, B. Kawohl, “A paper of Legendre revisited”, Forum Math., 9:5 (1997), 655–667 | MR | Zbl
[18] M. Belloni, A. Wagner, “Newton's problem of minimal resistance in the class of bodies with prescribed volume”, J. Convex Anal., 10:2 (2003), 491–500 | MR | Zbl
[19] A. Yu. Plakhov, D. F. M. Torres, “Newton's aerodynamic problem in media of chaotically moving particles”, Sb. Math., 196:5–6 (2005), 885–933 | DOI | MR | Zbl
[20] A. Yu. Plakhov, “On Newton's problem of a body of least aerodynamic resistance”, Dokl. Math., 67:3 (2003), 362–365 | MR | Zbl
[21] L. B. Bunimovich, “Mushrooms and other billiards with divided phase space”, Chaos, 11:4 (2001), 802–808 | DOI | MR | Zbl
[22] A. Plakhov, “Billiards and two-dimensional problems of optimal resistance”, Arch. Ration. Mech. Anal., 194:2 (2009), 349–381 | DOI
[23] A. Plakhov, “Billiard scattering on rough sets: two-dimensional case”, SIAM J. Math. Anal., 40:6 (2009), 2155–2178 ; , 2007 arXiv: 0711.0616 | DOI | MR
[24] A. Yu. Plakhov, “Billiards in unbounded domains reversing the direction of motion of a particle”, Russian Math. Surveys, 61:1 (2006), 179–180 | DOI | MR | Zbl
[25] N. Chernov, “Entropy, Lyapunov exponents, and mean free path for billiards”, J. Statist. Phys., 88:1–2 (1997), 1–29 | DOI | MR | Zbl
[26] A. Yu. Plakhov, “Newton's problem of the body of minimum mean resistance”, Sb. Math., 195:7 (2004), 1017–1037 | DOI | MR | Zbl
[27] A. Yu. Plakhov, “Exact solutions of the one-dimensional Monge–Kantorovich problem”, Sb. Math., 195:9 (2006), 1291–1307 | DOI | MR | Zbl