Scattering in billiards and problems of Newtonian aerodynamics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 5, pp. 873-938 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains results relating to billiards and their applications to various resistance optimization problems generalizing Newton's aerodynamic problem. The results can be divided into three groups. First, minimum resistance problems for bodies moving translationally in a highly rarefied medium are considered. It is shown that generically the infimum of the resistance is zero, that is, there are almost ‘perfectly streamlined’ bodies. Second, a rough body is defined and results on characterization of billiard scattering on non-convex and rough bodies are presented. Third, these results are used to reduce some problems on minimum and maximum resistance of moving and slowly rotating bodies to special problems on optimal mass transfer, which are then explicitly solved. In particular, the resistance of a 3-dimensional convex body can be at most doubled or at most reduced by 3.05% by grooving its surface. Bibliography: 27 titles.
Keywords: scattering, Newton's aerodynamic problem, free molecular flow, rough body.
Mots-clés : billiards, optimal mass transfer
@article{RM_2009_64_5_a2,
     author = {A. Yu. Plakhov},
     title = {Scattering in billiards and problems of {Newtonian} aerodynamics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {873--938},
     year = {2009},
     volume = {64},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_5_a2/}
}
TY  - JOUR
AU  - A. Yu. Plakhov
TI  - Scattering in billiards and problems of Newtonian aerodynamics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 873
EP  - 938
VL  - 64
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_5_a2/
LA  - en
ID  - RM_2009_64_5_a2
ER  - 
%0 Journal Article
%A A. Yu. Plakhov
%T Scattering in billiards and problems of Newtonian aerodynamics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 873-938
%V 64
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2009_64_5_a2/
%G en
%F RM_2009_64_5_a2
A. Yu. Plakhov. Scattering in billiards and problems of Newtonian aerodynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 5, pp. 873-938. http://geodesic.mathdoc.fr/item/RM_2009_64_5_a2/

[1] I. K. Harrison, G. G. Swinerd, “A free molecule aerodynamic investigation using multiple satellite analysis”, Planet. Space Sci., 44:2 (1996), 171–180 | DOI

[2] P. D. Fieseler, “A method for solar sailing in a low Earth orbit”, Acta Astronautica, 43:9–10 (1998), 531–541 | DOI

[3] K. Moe, M. M. Moe, “Gas-surface interactions and satellite drag coefficients”, Planet. Space Sci., 53:8 (2005), 793–801 | DOI

[4] I. Newton, Philosophiae naturalis principia mathematica, 1687 ; I. Newton, The mathematical principles of natural philosophy, Philosophical Library, New York, 1964 ; I. Nyuton, Matematicheskie nachala naturalnoi filosofii, Tip. M. M. Stasyulevicha, Petrograd, 1915–1916 | MR | Zbl | Zbl

[5] V. M. Tikhomirov, “Aerodinamicheskaya zadacha Nyutona”, Kvant, 1982, no. 5, 11–18 | MR

[6] F. Brock, V. Ferone, B. Kawohl, “A symmetry problem in the calculus of variations”, Calc. Var. Partial Differential Equations, 4:6 (1996), 593–599 | DOI | MR | Zbl

[7] D. Bucur, G. Buttazzo, Variational methods in shape optimization problems, Progr. Nonlinear Differential Equations Appl., 65, Birkhäuser, Boston, MA, 2005 | DOI | MR | Zbl

[8] G. Buttazzo, V. Ferone, B. Kawohl, “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173:1 (1995), 71–89 | DOI | MR | Zbl

[9] G. Buttazzo, B. Kawohl, “On Newton's problem of minimal resistance”, Math. Intelligencer, 15:4 (1993), 7–12 | DOI | MR | Zbl

[10] M. Comte, T. Lachand-Robert, “Newton's problem of the body of minimal resistance under a single-impact assumption”, Calc. Var. Partial Differential Equations, 12:2 (2001), 173–211 | DOI | MR | Zbl

[11] M. Comte, T. Lachand-Robert, “Existence of minimizers for Newton's problem of the body of minimal resistance under a single-impact assumption”, J. Anal. Math., 83:1 (2001), 313–335 | DOI | MR | Zbl

[12] M. Comte, T. Lachand-Robert, “Functions and domains having minimal resistance under a single-impact assumption”, SIAM J. Math. Anal., 34:1 (2002), 101–120 | DOI | MR | Zbl

[13] T. Lachand-Robert, E. Oudet, “Minimizing within convex bodies using a convex hull method”, SIAM J. Optim., 16:2 (2006), 368–379 | DOI | MR | Zbl

[14] T. Lachand-Robert, M. A. Peletier, “Newton's problem of the body of minimal resistance in the class of convex developable functions”, Math. Nachr., 226:1 (2001), 153–176 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] T. Lachand-Robert, M. A. Peletier, “An example of non-convex minimization and an application to Newton's problem of the body of least resistance”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18:2 (2001), 179–198 | DOI | MR | Zbl

[16] A. M. Legendre, Memoires de l'Académie royale de sciences, année 1786, Paris, 1788, 7–37

[17] M. Belloni, B. Kawohl, “A paper of Legendre revisited”, Forum Math., 9:5 (1997), 655–667 | MR | Zbl

[18] M. Belloni, A. Wagner, “Newton's problem of minimal resistance in the class of bodies with prescribed volume”, J. Convex Anal., 10:2 (2003), 491–500 | MR | Zbl

[19] A. Yu. Plakhov, D. F. M. Torres, “Newton's aerodynamic problem in media of chaotically moving particles”, Sb. Math., 196:5–6 (2005), 885–933 | DOI | MR | Zbl

[20] A. Yu. Plakhov, “On Newton's problem of a body of least aerodynamic resistance”, Dokl. Math., 67:3 (2003), 362–365 | MR | Zbl

[21] L. B. Bunimovich, “Mushrooms and other billiards with divided phase space”, Chaos, 11:4 (2001), 802–808 | DOI | MR | Zbl

[22] A. Plakhov, “Billiards and two-dimensional problems of optimal resistance”, Arch. Ration. Mech. Anal., 194:2 (2009), 349–381 | DOI

[23] A. Plakhov, “Billiard scattering on rough sets: two-dimensional case”, SIAM J. Math. Anal., 40:6 (2009), 2155–2178 ; , 2007 arXiv: 0711.0616 | DOI | MR

[24] A. Yu. Plakhov, “Billiards in unbounded domains reversing the direction of motion of a particle”, Russian Math. Surveys, 61:1 (2006), 179–180 | DOI | MR | Zbl

[25] N. Chernov, “Entropy, Lyapunov exponents, and mean free path for billiards”, J. Statist. Phys., 88:1–2 (1997), 1–29 | DOI | MR | Zbl

[26] A. Yu. Plakhov, “Newton's problem of the body of minimum mean resistance”, Sb. Math., 195:7 (2004), 1017–1037 | DOI | MR | Zbl

[27] A. Yu. Plakhov, “Exact solutions of the one-dimensional Monge–Kantorovich problem”, Sb. Math., 195:9 (2006), 1291–1307 | DOI | MR | Zbl