On the definition of `chaos'
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 701-744 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new definition of a chaotic invariant set is given for a continuous semiflow in a metric space. It generalizes the well-known definition due to Devaney and allows one to take into account a special feature occurring in the non-compact infinite-dimensional case: so-called turbulent chaos. The paper consists of two sections. The first contains several well-known facts from chaotic dynamics, together with new definitions and results. The second presents a concrete example demonstrating that our definition of chaos is meaningful. Namely, an infinite-dimensional system of ordinary differential equations is investigated having an attractor that is chaotic in the sense of the new definition but not in the sense of Devaney or Knudsen. Bibliography: 65 titles.
Keywords: attractor, topological transitivity, mixing, invariant measure, hyperbolicity.
Mots-clés : chaos
@article{RM_2009_64_4_a3,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {On the definition of `chaos'},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {701--744},
     year = {2009},
     volume = {64},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - On the definition of `chaos'
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 701
EP  - 744
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_4_a3/
LA  - en
ID  - RM_2009_64_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T On the definition of `chaos'
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 701-744
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2009_64_4_a3/
%G en
%F RM_2009_64_4_a3
A. Yu. Kolesov; N. Kh. Rozov. On the definition of `chaos'. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 701-744. http://geodesic.mathdoc.fr/item/RM_2009_64_4_a3/

[1] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Stud. Nonlinearity, Addison-Wesley, Redwood City, CA, 1989 | MR | Zbl

[2] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl

[3] D. Assaf IV, S. Gadbois, “Definition of chaos”, Amer. Math. Monthly, 99:9 (1992), 865

[4] M. Vellekoop, R. Berglund, “On intervals, transitivity = chaos”, Amer. Math. Monthly, 101:4 (1994), 353–355 | DOI | MR | Zbl

[5] P. Touhey, “Yet another definition of chaos”, Amer. Math. Monthly, 104:5 (1997), 411–414 | DOI | MR | Zbl

[6] C. Knudsen, “Chaos without nonperiodicity”, Amer. Math. Monthly, 101:6 (1994), 563–565 | DOI | MR | Zbl

[7] B. Hasselblatt, A. Katok, A first course in dynamics. With a panorama of recent developments, Cambridge Univ. Press, New York, 2003 | MR | Zbl

[8] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, NITs “RKhD”, M.–Izhevsk, 2004; 1-Рμ РёР·Рґ., РћР“Р�Р—, Рњ.–Р›., 1947 ; V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., VIII, Princeton Univ. Press, New Jersey, 1960 | MR | Zbl | MR | Zbl

[9] D. Ruelle, F. Takens, “On the nature of turbulence”, Comm. Math. Phys., 20:3 (1971), 167–192 | DOI | MR | Zbl

[10] R. V. Plykin, E. A. Sataev, S. V. Shlyachkov, “Strange attractors”, Dynamical systems IX, Encyclopaedia Math. Sci., 66, Springer, Berlin, 1995, 93–139 | MR | MR | Zbl | Zbl

[11] C. Grebogi, E. Ott, S. Pelikan, J. A. Yorke, “Strange attractors that are not chaotic”, Phys. D, 13:1–2 (1984), 261–268 | DOI | MR | Zbl

[12] J.-P. Eckmann, D. Ruelle, “Ergodic theory of chaos and strange attractors”, part 1, Rev. Modern Phys., 57:3 (1985), 617–656 | DOI | MR | Zbl

[13] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Texts Appl. Math., 2, Springer, New York, 1990 | MR | Zbl

[14] H. G. Schuster, W. Just, Deterministic chaos. An introduction, Wiley–VCH Verlag, Weinheim, 2005 | MR | Zbl

[15] P. Collet, J.-P. Eckmann, Concepts and results in chaotic dynamics: a short course, Theoret. Math. Phys., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[16] J. Guckenheimer, Ph. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sci., 42, Springer-Verlag, New York, 1983 | MR | Zbl

[17] Yu. I. Neimark, P. S. Landa, Stochastic and chaotic oscillations, Mathematics and its Applications (Soviet Series), 77, Kluwer, Dordrecht, 1992 | MR | MR | Zbl | Zbl

[18] A. Yu. Loskutov, A. S. Mikhailov, Osnovy teorii slozhnykh sistem, In-t kompyuternykh issledovanii, M.–Izhevsk, 2007

[19] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR | Zbl

[20] G. M. Zaslavskii, Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984 | MR | Zbl

[21] V. I. Oseledets, “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Mosc. Math. Soc., 19 (1968), 197–231 | MR | Zbl

[22] J. Milnor, “On the concept of attractor”, Comm. Math. Phys., 99:2 (1985), 177–196 | DOI | MR | Zbl

[23] D. V. Turaev, L. P. Shil'nikov, “Pseudohyperbolicity and the problem of the periodic perturbation of Lorenz-type attractors”, Dokl. Math., 77:1 (2008), 17–21 | DOI | MR | Zbl

[24] V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. MMO, 44 (1982), 150–212 | MR | Zbl

[25] C. Robinson, “Homoclinic bifurcation to a transitive attractor of Lorenz type”, Nonlinearity, 2:4 (1989), 495–518 | DOI | MR | Zbl

[26] W. Tucker, “A rigorous ODE solver and Smale's 14th problem”, Found. Comput. Math., 2:1 (2002), 53–117 | MR | Zbl

[27] D. V. Anosov, V. V. Solodov, “Hyperbolic sets”, Dynamical systems IX, Encyclopaedia Math. Sci., 66, Springer, Berlin, 1995, 10–92 | MR | MR | Zbl | Zbl

[28] Ya. B. Pesin, Lectures on partial hyperbolicity and stable ergodicity, Zur. Lect. Adv. Math., EMS, Zürich, 2004 | MR | Zbl

[29] R. Bowen, D. Ruelle, “The ergodic theory of Axiom A flows”, Invent. Math., 29 (1975), 181–202 | DOI | MR | Zbl

[30] D. V. Turaev, L. P. Shil'nikov, “Blue sky catastrophes”, Dokl. Math., 51:3 (1995), 404–407 | MR | Zbl

[31] L. Shilnikov, “Bifurcations and strange attractors”, Proceedings of the International Congress of Mathematicians, Vol. 3 (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 349–372 ; , 2003 arXiv: math/0304457 | MR | Zbl

[32] S. P. Kuznetsov, I. R. Sataev, “Proverka uslovii giperbolichnosti khaoticheskogo attraktora v sisteme svyazannykh neavtonomnykh ostsillyatorov Van-der-Polya”, Izv. vuzov “Prikl. nelin. dinamika”, 14:5 (2006), 3–29 | Zbl

[33] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[34] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982 | MR | MR | Zbl | Zbl

[35] Ya. G. Sinai, Topics in ergodic theory, Princeton Math. Ser., 44, Princeton Univ. Press, Princeton, NJ, 1994 | MR | Zbl | Zbl

[36] V. I. Arnold, A. Avets, Ergodicheskie problemy klassicheskoi mekhaniki, Ser. RKhD, 11, NITs “RKhD”, Izhevsk, 1999 ; V. I. Arnol'd, A. Avez, Ergodic problems of classical mechanics, Benjamin, New York–Amsterdam, 1968 ; Problèmes ergodiques de la mécanique classique, Monographies Internationales de Mathématiques Modernes, No 9, Gauthier-Villars, Paris, 1967 | Zbl | MR | Zbl | MR

[37] K. E. Petersen, “A topologically strongly mixing symbolic minimal set”, Trans. Amer. Math. Soc., 148:2 (1970), 603–612 | DOI | MR | Zbl

[38] V. A. Rokhlin, “Tochnye endomorfizmy prostranstv Lebega”, Izv. AN SSSR. Ser. matem., 25:4 (1961), 499–530 | MR | Zbl

[39] Ya. G. Sinai, “The stochasticity of dynamical systems”, Selecta Math. Soviet., 1, no. 1, Birkhäuser, Boston, MA, 1981, 100–119 | MR | MR

[40] V. M. Alekseev, “Quasirandom dynamical systems. I. Quasirandom diffeomorphisms”, Math. USSR-Sb., 5:1 (1968), 73–128 | DOI | Zbl

[41] V. M. Alekseev, Lektsii po nebesnoi mekhanike, NITs “RKhD”, M.–Izhevsk, 1999 | Zbl

[42] N. F. G. Martin, J. W. England, Mathematical theory of entropy, Encyclopedia Math. Appl., 12, Addison-Wesley, Reading, MA, 1981 | MR | MR | Zbl | Zbl

[43] E. I. Dinaburg, “A correlation between topological entropy and metric entropy”, Soviet Math. Dokl., 11 (1970), 13–16 | MR | Zbl

[44] T. N. T. Goodman, “Relating topological entropy and measure entropy”, Bull. Lond. Math. Soc., 3:2 (1971), 176–180 | DOI | MR | Zbl

[45] H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1:1 (1967), 1–49 | DOI | MR | Zbl

[46] A. Katok, “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137–173 | MR | Zbl

[47] A. A. Brudno, “Topologicheskaya entropiya i slozhnost po A. N. Kolmogorovu”, UMN, 29:6 (1974), 157–158 | MR | Zbl

[48] A. A. Brudno, “The complexity of the trajectories of a dynamical system”, Russian Math. Surveys, 33:1 (1978), 197–198 | DOI | MR | Zbl | Zbl

[49] A. N. Kolmogorov, “Three approaches to the definition of the notion of amount of information”, Selected works of A. N. Kolmogorov. Volume III: Information theory and the theory of algorithms, Mathematics and Its Applications. Soviet Series, 27, ed. A. N. Shiryayev, Kluwer, Dordrecht, 1993 | MR | MR | Zbl | Zbl

[50] A. K. Zvonkin, L. A. Levin, “The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms”, Russian Math. Surveys, 25:6 (1970), 83–124 | DOI | MR | Zbl

[51] Ju. L. Daleckii, M. G. Krein, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974 | MR | MR | Zbl

[52] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl

[53] J. Palis (Jr.), W. de Melo, Geometric theory of dynamical systems: An introduction, Springer-Verlag, New York–Berlin, 1982 | MR | MR | Zbl

[54] V. A. Pliss, “Printsip svedeniya v teorii ustoichivosti dvizheniya”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1297–1324 | MR | Zbl

[55] J. Carr, Application of centre manifold theory, Appl. Math. Sci., 35, Springer-Verlag, New York–Berlin, 1981 | MR | Zbl

[56] D. Henry, “Geometric theory of semilinear parabolic equations”, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981 | DOI | MR | Zbl

[57] A. Scott, Nonlinear science. Emergence and dynamics of coherent structures, Oxf. Texts Appl. Eng. Math., 1, Oxford Univ. Press, Oxford, 1999 | MR | Zbl

[58] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Mathematical aspects of the theory of development of turbulence in the sense of Landau”, Russian Math. Surveys, 63:2 (2008), 221–282 | DOI | Zbl

[59] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Development of Landau turbulence in the multiplicator-accelerator model”, Dokl. Math., 77:3 (2008), 463–466 | DOI | MR | Zbl

[60] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[61] L. D. Landau, “K probleme turbulentnosti”, Dokl. AN SSSR, 44:8 (1944), 339–342

[62] M. V. Kapranov, V. N. Kuleshov, G. M. Utkin, Teoriya kolebanii v radiotekhnike, Nauka, M., 1984

[63] A. C. Scott, “Distributed multimode oscillators of one and two spatial dimensions”, IEEE Trans. Circuit Theory, 17:1 (1970), 55–80 | DOI

[64] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[65] Yu. S. Kolesov, “The attractor problem for nonlinear wave equations in plane domains”, Math. Notes, 68:2 (2000), 191–200 | DOI | MR | Zbl