Mots-clés : chaos
@article{RM_2009_64_4_a3,
author = {A. Yu. Kolesov and N. Kh. Rozov},
title = {On the definition of `chaos'},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {701--744},
year = {2009},
volume = {64},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_4_a3/}
}
A. Yu. Kolesov; N. Kh. Rozov. On the definition of `chaos'. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 701-744. http://geodesic.mathdoc.fr/item/RM_2009_64_4_a3/
[1] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Stud. Nonlinearity, Addison-Wesley, Redwood City, CA, 1989 | MR | Zbl
[2] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl
[3] D. Assaf IV, S. Gadbois, “Definition of chaos”, Amer. Math. Monthly, 99:9 (1992), 865
[4] M. Vellekoop, R. Berglund, “On intervals, transitivity = chaos”, Amer. Math. Monthly, 101:4 (1994), 353–355 | DOI | MR | Zbl
[5] P. Touhey, “Yet another definition of chaos”, Amer. Math. Monthly, 104:5 (1997), 411–414 | DOI | MR | Zbl
[6] C. Knudsen, “Chaos without nonperiodicity”, Amer. Math. Monthly, 101:6 (1994), 563–565 | DOI | MR | Zbl
[7] B. Hasselblatt, A. Katok, A first course in dynamics. With a panorama of recent developments, Cambridge Univ. Press, New York, 2003 | MR | Zbl
[8] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, NITs “RKhD”, M.–Izhevsk, 2004; 1-Рμ РёР·Рґ., РћР“Р�Р—, Рњ.–Р›., 1947 ; V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., VIII, Princeton Univ. Press, New Jersey, 1960 | MR | Zbl | MR | Zbl
[9] D. Ruelle, F. Takens, “On the nature of turbulence”, Comm. Math. Phys., 20:3 (1971), 167–192 | DOI | MR | Zbl
[10] R. V. Plykin, E. A. Sataev, S. V. Shlyachkov, “Strange attractors”, Dynamical systems IX, Encyclopaedia Math. Sci., 66, Springer, Berlin, 1995, 93–139 | MR | MR | Zbl | Zbl
[11] C. Grebogi, E. Ott, S. Pelikan, J. A. Yorke, “Strange attractors that are not chaotic”, Phys. D, 13:1–2 (1984), 261–268 | DOI | MR | Zbl
[12] J.-P. Eckmann, D. Ruelle, “Ergodic theory of chaos and strange attractors”, part 1, Rev. Modern Phys., 57:3 (1985), 617–656 | DOI | MR | Zbl
[13] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Texts Appl. Math., 2, Springer, New York, 1990 | MR | Zbl
[14] H. G. Schuster, W. Just, Deterministic chaos. An introduction, Wiley–VCH Verlag, Weinheim, 2005 | MR | Zbl
[15] P. Collet, J.-P. Eckmann, Concepts and results in chaotic dynamics: a short course, Theoret. Math. Phys., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[16] J. Guckenheimer, Ph. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Appl. Math. Sci., 42, Springer-Verlag, New York, 1983 | MR | Zbl
[17] Yu. I. Neimark, P. S. Landa, Stochastic and chaotic oscillations, Mathematics and its Applications (Soviet Series), 77, Kluwer, Dordrecht, 1992 | MR | MR | Zbl | Zbl
[18] A. Yu. Loskutov, A. S. Mikhailov, Osnovy teorii slozhnykh sistem, In-t kompyuternykh issledovanii, M.–Izhevsk, 2007
[19] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR | Zbl
[20] G. M. Zaslavskii, Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984 | MR | Zbl
[21] V. I. Oseledets, “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Mosc. Math. Soc., 19 (1968), 197–231 | MR | Zbl
[22] J. Milnor, “On the concept of attractor”, Comm. Math. Phys., 99:2 (1985), 177–196 | DOI | MR | Zbl
[23] D. V. Turaev, L. P. Shil'nikov, “Pseudohyperbolicity and the problem of the periodic perturbation of Lorenz-type attractors”, Dokl. Math., 77:1 (2008), 17–21 | DOI | MR | Zbl
[24] V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. MMO, 44 (1982), 150–212 | MR | Zbl
[25] C. Robinson, “Homoclinic bifurcation to a transitive attractor of Lorenz type”, Nonlinearity, 2:4 (1989), 495–518 | DOI | MR | Zbl
[26] W. Tucker, “A rigorous ODE solver and Smale's 14th problem”, Found. Comput. Math., 2:1 (2002), 53–117 | MR | Zbl
[27] D. V. Anosov, V. V. Solodov, “Hyperbolic sets”, Dynamical systems IX, Encyclopaedia Math. Sci., 66, Springer, Berlin, 1995, 10–92 | MR | MR | Zbl | Zbl
[28] Ya. B. Pesin, Lectures on partial hyperbolicity and stable ergodicity, Zur. Lect. Adv. Math., EMS, Zürich, 2004 | MR | Zbl
[29] R. Bowen, D. Ruelle, “The ergodic theory of Axiom A flows”, Invent. Math., 29 (1975), 181–202 | DOI | MR | Zbl
[30] D. V. Turaev, L. P. Shil'nikov, “Blue sky catastrophes”, Dokl. Math., 51:3 (1995), 404–407 | MR | Zbl
[31] L. Shilnikov, “Bifurcations and strange attractors”, Proceedings of the International Congress of Mathematicians, Vol. 3 (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 349–372 ; , 2003 arXiv: math/0304457 | MR | Zbl
[32] S. P. Kuznetsov, I. R. Sataev, “Proverka uslovii giperbolichnosti khaoticheskogo attraktora v sisteme svyazannykh neavtonomnykh ostsillyatorov Van-der-Polya”, Izv. vuzov “Prikl. nelin. dinamika”, 14:5 (2006), 3–29 | Zbl
[33] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[34] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982 | MR | MR | Zbl | Zbl
[35] Ya. G. Sinai, Topics in ergodic theory, Princeton Math. Ser., 44, Princeton Univ. Press, Princeton, NJ, 1994 | MR | Zbl | Zbl
[36] V. I. Arnold, A. Avets, Ergodicheskie problemy klassicheskoi mekhaniki, Ser. RKhD, 11, NITs “RKhD”, Izhevsk, 1999 ; V. I. Arnol'd, A. Avez, Ergodic problems of classical mechanics, Benjamin, New York–Amsterdam, 1968 ; Problèmes ergodiques de la mécanique classique, Monographies Internationales de Mathématiques Modernes, No 9, Gauthier-Villars, Paris, 1967 | Zbl | MR | Zbl | MR
[37] K. E. Petersen, “A topologically strongly mixing symbolic minimal set”, Trans. Amer. Math. Soc., 148:2 (1970), 603–612 | DOI | MR | Zbl
[38] V. A. Rokhlin, “Tochnye endomorfizmy prostranstv Lebega”, Izv. AN SSSR. Ser. matem., 25:4 (1961), 499–530 | MR | Zbl
[39] Ya. G. Sinai, “The stochasticity of dynamical systems”, Selecta Math. Soviet., 1, no. 1, Birkhäuser, Boston, MA, 1981, 100–119 | MR | MR
[40] V. M. Alekseev, “Quasirandom dynamical systems. I. Quasirandom diffeomorphisms”, Math. USSR-Sb., 5:1 (1968), 73–128 | DOI | Zbl
[41] V. M. Alekseev, Lektsii po nebesnoi mekhanike, NITs “RKhD”, M.–Izhevsk, 1999 | Zbl
[42] N. F. G. Martin, J. W. England, Mathematical theory of entropy, Encyclopedia Math. Appl., 12, Addison-Wesley, Reading, MA, 1981 | MR | MR | Zbl | Zbl
[43] E. I. Dinaburg, “A correlation between topological entropy and metric entropy”, Soviet Math. Dokl., 11 (1970), 13–16 | MR | Zbl
[44] T. N. T. Goodman, “Relating topological entropy and measure entropy”, Bull. Lond. Math. Soc., 3:2 (1971), 176–180 | DOI | MR | Zbl
[45] H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1:1 (1967), 1–49 | DOI | MR | Zbl
[46] A. Katok, “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137–173 | MR | Zbl
[47] A. A. Brudno, “Topologicheskaya entropiya i slozhnost po A. N. Kolmogorovu”, UMN, 29:6 (1974), 157–158 | MR | Zbl
[48] A. A. Brudno, “The complexity of the trajectories of a dynamical system”, Russian Math. Surveys, 33:1 (1978), 197–198 | DOI | MR | Zbl | Zbl
[49] A. N. Kolmogorov, “Three approaches to the definition of the notion of amount of information”, Selected works of A. N. Kolmogorov. Volume III: Information theory and the theory of algorithms, Mathematics and Its Applications. Soviet Series, 27, ed. A. N. Shiryayev, Kluwer, Dordrecht, 1993 | MR | MR | Zbl | Zbl
[50] A. K. Zvonkin, L. A. Levin, “The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms”, Russian Math. Surveys, 25:6 (1970), 83–124 | DOI | MR | Zbl
[51] Ju. L. Daleckii, M. G. Krein, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974 | MR | MR | Zbl
[52] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl
[53] J. Palis (Jr.), W. de Melo, Geometric theory of dynamical systems: An introduction, Springer-Verlag, New York–Berlin, 1982 | MR | MR | Zbl
[54] V. A. Pliss, “Printsip svedeniya v teorii ustoichivosti dvizheniya”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1297–1324 | MR | Zbl
[55] J. Carr, Application of centre manifold theory, Appl. Math. Sci., 35, Springer-Verlag, New York–Berlin, 1981 | MR | Zbl
[56] D. Henry, “Geometric theory of semilinear parabolic equations”, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981 | DOI | MR | Zbl
[57] A. Scott, Nonlinear science. Emergence and dynamics of coherent structures, Oxf. Texts Appl. Eng. Math., 1, Oxford Univ. Press, Oxford, 1999 | MR | Zbl
[58] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Mathematical aspects of the theory of development of turbulence in the sense of Landau”, Russian Math. Surveys, 63:2 (2008), 221–282 | DOI | Zbl
[59] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Development of Landau turbulence in the multiplicator-accelerator model”, Dokl. Math., 77:3 (2008), 463–466 | DOI | MR | Zbl
[60] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[61] L. D. Landau, “K probleme turbulentnosti”, Dokl. AN SSSR, 44:8 (1944), 339–342
[62] M. V. Kapranov, V. N. Kuleshov, G. M. Utkin, Teoriya kolebanii v radiotekhnike, Nauka, M., 1984
[63] A. C. Scott, “Distributed multimode oscillators of one and two spatial dimensions”, IEEE Trans. Circuit Theory, 17:1 (1970), 55–80 | DOI
[64] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005
[65] Yu. S. Kolesov, “The attractor problem for nonlinear wave equations in plane domains”, Math. Notes, 68:2 (2000), 191–200 | DOI | MR | Zbl