Anomalous current in periodic Lorentz gases with infinite horizon
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 651-699 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Electric current is studied in a two-dimensional periodic Lorentz gas in the presence of a weak homogeneous electric field. When the horizon is finite, that is, free flights between collisions are bounded, the resulting current $\mathbf{J}$ is proportional to the voltage difference $\mathbf{E}$, that is, $\mathbf{J}=\frac12\mathbf{D}^*\mathbf{E}+o(\|\mathbf{E}\|)$, where $\mathbf{D}^*$ is the diffusion matrix of a Lorentz particle moving freely without an electric field (see a mathematical proof in [1]). This formula agrees with Ohm's classical law and the Einstein relation. Here the more difficult model with an infinite horizon is investigated. It is found that infinite corridors between scatterers allow the particles (electrons) to move faster, resulting in an abnormal current (causing ‘superconductivity’). More precisely, the current is now given by $\mathbf{J}=\frac12\mathbf{D}\mathbf{E}\bigl|\log\|\mathbf{E}\|\bigr|+\mathscr{O}(\|\mathbf{E}\|)$, where $\mathbf{D}$ is the ‘superdiffusion’ matrix of a Lorentz particle moving freely without an electric field. This means that Ohm's law fails in this regime, but the Einstein relation (suitably interpreted) still holds. New results are also obtained for the infinite-horizon Lorentz gas without external fields, complementing recent studies by Szász and Varjú [2]. Bibliography: 31 titles.
Keywords: Lorentz gas, electric current, Ohm's law.
Mots-clés : billiards, diffusion
@article{RM_2009_64_4_a2,
     author = {D. I. Dolgopyat and N. I. Chernov},
     title = {Anomalous current in periodic {Lorentz} gases with infinite horizon},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {651--699},
     year = {2009},
     volume = {64},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_4_a2/}
}
TY  - JOUR
AU  - D. I. Dolgopyat
AU  - N. I. Chernov
TI  - Anomalous current in periodic Lorentz gases with infinite horizon
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 651
EP  - 699
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_4_a2/
LA  - en
ID  - RM_2009_64_4_a2
ER  - 
%0 Journal Article
%A D. I. Dolgopyat
%A N. I. Chernov
%T Anomalous current in periodic Lorentz gases with infinite horizon
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 651-699
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2009_64_4_a2/
%G en
%F RM_2009_64_4_a2
D. I. Dolgopyat; N. I. Chernov. Anomalous current in periodic Lorentz gases with infinite horizon. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 651-699. http://geodesic.mathdoc.fr/item/RM_2009_64_4_a2/

[1] N. I. Chernov, G. L. Eyink, J. L. Lebowitz, Ya. G. Sinai, “Steady-state electrical conduction in the periodic Lorentz gas”, Comm. Math. Phys., 154:3 (1993), 569–601 | DOI | MR | Zbl

[2] D. Szász, T. Varjú, “Limit laws and recurrence for the planar Lorentz process with infinite horizon”, J. Statist. Phys., 129:1 (2007), 59–80 | DOI | MR | Zbl

[3] H. A. Lorentz, “The motion of electrons in metallic bodies”, Proc. Amst. Acad., 7 (1904), 438–453

[4] Ya. G. Sinai, “Dynamical systems with elastic reflections”, Russian Math. Surveys, 25:2 (1970), 137–189 | DOI | MR | Zbl | Zbl

[5] G. Gallavotti, D. S. Ornstein, “Billiards and Bernoulli schemes”, Comm. Math. Phys., 38:2 (1974), 83–101 | DOI | MR | Zbl

[6] L. A. Bunimovich, Ya. G. Sinai, N. I. Chernov, “Statistical properties of two-dimensional hyperbolic billiards”, Russian Math. Surveys, 46:4 (1991), 47–106 | DOI | MR | Zbl

[7] N. Chernov, R. Markarian, “Chaotic billiards”, Math. Surveys Monogr., 127, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl

[8] L. A. Bunimovich, Ya. G. Sinai, “Statistical properties of Lorentz gas with periodic configuration of scatterers”, Comm. Math. Phys., 78:4 (1981), 479–497 | DOI | MR | Zbl

[9] Lai-Sang Young, “Statistical properties of dynamical systems with some hyperbolicity”, Ann. of Math. (2), 147:3 (1998), 585–650 | DOI | MR | Zbl

[10] N. I. Chernov, G. L. Eyink, J. L. Lebowitz, Ya. G. Sinai, “Derivation of Ohm's law in a deterministic mechanical model”, Phys. Rev. Lett., 70:15 (1993), 2209–2212 | DOI

[11] B. Moran, W. G. Hoover, S. Bestiale, “Diffusion in a periodic Lorentz gas”, J. Statist. Phys., 48:3–4 (1987), 709–726 | DOI | MR | Zbl

[12] N. Chernov, “Sinai billiards under small external forces”, Ann. Henri Poincaré, 2:2 (2001), 197–236 | DOI | MR | Zbl

[13] N. Chernov, “Sinai billiards under small external forces. II”, Ann. Henri Poincaré, 9:1 (2008), 91–107 | DOI | MR | Zbl

[14] N. Chernov, D. Dolgopyat, “Diffusive motion and recurrence on an idealized Galton board”, Phys. Rev. Lett., 99:3 (2007), paper 030601 (4 pages) | DOI

[15] N. Chernov, D. Dolgopyat, “The Galton board: limit theorems and recurrence”, J. Amer. Math. Soc., 22 (2009), 821–858 | DOI | MR

[16] F. Galton, Natural Inheritance, Macmillan, 1889

[17] N. Chernov, D. Dolgopyat, “Brownian Brownian Motion. I”, Mem. Amer. Math. Soc., 198, no. 927, 2009 | MR | Zbl

[18] P. M. Bleher, “Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon”, J. Statist. Phys., 66:1–2 (1992), 315–373 | DOI | MR | Zbl

[19] J. Marklof, A. Strömbergsson, “Kinetic transport in the two-dimensional periodic Lorentz gas”, Nonlinearity, 21:7 (2008), 1413–1422 | DOI | MR | Zbl

[20] J. Marklof, A. Strömbergsson, “The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems”, Ann. of Math. (to appear); , 2007 arxiv.org: 0706.4395

[21] N. Chernov, “Decay of correlations and dispersing billiards”, J. Statist. Phys., 94:3–4 (1999), 513–556 | DOI | MR | Zbl

[22] Lai-Sang Young, “Dimension, entropy and Lyapunov exponents”, Ergodic Theory Dynam. Systems, 2:1 (1982), 109–124 | MR | Zbl

[23] I. Melbourne, A. Török, “Statistical limit theorems for suspension flows”, Israel J. Math., 144:2 (2004), 191–209 | DOI | MR | Zbl

[24] M. P. Wojtkowski, “$W$-flows on Weyl manifolds and Gaussian thermostats”, J. Math. Pures Appl. (9), 79:10 (2000), 953–974 | DOI | MR | Zbl

[25] N. Chernov, H.-K. Zhang, “Billiards with polynomial mixing rates”, Nonlinearity, 18:4 (2005), 1527–1553 | DOI | MR | Zbl

[26] Ya. B. Pesin, “Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties”, Ergodic Theory Dynam. Systems, 12:1 (1992), 123–151 | DOI | MR | Zbl

[27] E. A. Sataev, “Invariant measures for hyperbolic maps with singularities”, Russian Math. Surveys, 47:1 (1992), 191–251 | DOI | MR | Zbl

[28] N. Chernov, H.-K. Zhang, “On statistical properties of hyperbolic systems with singularities” (to appear)

[29] N. Chernov, H.-K. Zhang, “Improved estimates for correlations in billiards”, Comm. Math. Phys., 277:2 (2008), 305–321 | DOI | MR | Zbl

[30] P. Billingsley, Convergence of probability measures, Wiley, New York–London–Sydney, 1968 ; P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, Fizmatlit, M., 1977 | MR | Zbl | MR

[31] D. Dolgopyat, “Limit theorems for partially hyperbolic systems”, Trans. Amer. Math. Soc., 356:4 (2004), 1637–1689 | DOI | MR | Zbl