Mots-clés : billiards, diffusion
@article{RM_2009_64_4_a2,
author = {D. I. Dolgopyat and N. I. Chernov},
title = {Anomalous current in periodic {Lorentz} gases with infinite horizon},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {651--699},
year = {2009},
volume = {64},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_4_a2/}
}
TY - JOUR AU - D. I. Dolgopyat AU - N. I. Chernov TI - Anomalous current in periodic Lorentz gases with infinite horizon JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 651 EP - 699 VL - 64 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2009_64_4_a2/ LA - en ID - RM_2009_64_4_a2 ER -
D. I. Dolgopyat; N. I. Chernov. Anomalous current in periodic Lorentz gases with infinite horizon. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 651-699. http://geodesic.mathdoc.fr/item/RM_2009_64_4_a2/
[1] N. I. Chernov, G. L. Eyink, J. L. Lebowitz, Ya. G. Sinai, “Steady-state electrical conduction in the periodic Lorentz gas”, Comm. Math. Phys., 154:3 (1993), 569–601 | DOI | MR | Zbl
[2] D. Szász, T. Varjú, “Limit laws and recurrence for the planar Lorentz process with infinite horizon”, J. Statist. Phys., 129:1 (2007), 59–80 | DOI | MR | Zbl
[3] H. A. Lorentz, “The motion of electrons in metallic bodies”, Proc. Amst. Acad., 7 (1904), 438–453
[4] Ya. G. Sinai, “Dynamical systems with elastic reflections”, Russian Math. Surveys, 25:2 (1970), 137–189 | DOI | MR | Zbl | Zbl
[5] G. Gallavotti, D. S. Ornstein, “Billiards and Bernoulli schemes”, Comm. Math. Phys., 38:2 (1974), 83–101 | DOI | MR | Zbl
[6] L. A. Bunimovich, Ya. G. Sinai, N. I. Chernov, “Statistical properties of two-dimensional hyperbolic billiards”, Russian Math. Surveys, 46:4 (1991), 47–106 | DOI | MR | Zbl
[7] N. Chernov, R. Markarian, “Chaotic billiards”, Math. Surveys Monogr., 127, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl
[8] L. A. Bunimovich, Ya. G. Sinai, “Statistical properties of Lorentz gas with periodic configuration of scatterers”, Comm. Math. Phys., 78:4 (1981), 479–497 | DOI | MR | Zbl
[9] Lai-Sang Young, “Statistical properties of dynamical systems with some hyperbolicity”, Ann. of Math. (2), 147:3 (1998), 585–650 | DOI | MR | Zbl
[10] N. I. Chernov, G. L. Eyink, J. L. Lebowitz, Ya. G. Sinai, “Derivation of Ohm's law in a deterministic mechanical model”, Phys. Rev. Lett., 70:15 (1993), 2209–2212 | DOI
[11] B. Moran, W. G. Hoover, S. Bestiale, “Diffusion in a periodic Lorentz gas”, J. Statist. Phys., 48:3–4 (1987), 709–726 | DOI | MR | Zbl
[12] N. Chernov, “Sinai billiards under small external forces”, Ann. Henri Poincaré, 2:2 (2001), 197–236 | DOI | MR | Zbl
[13] N. Chernov, “Sinai billiards under small external forces. II”, Ann. Henri Poincaré, 9:1 (2008), 91–107 | DOI | MR | Zbl
[14] N. Chernov, D. Dolgopyat, “Diffusive motion and recurrence on an idealized Galton board”, Phys. Rev. Lett., 99:3 (2007), paper 030601 (4 pages) | DOI
[15] N. Chernov, D. Dolgopyat, “The Galton board: limit theorems and recurrence”, J. Amer. Math. Soc., 22 (2009), 821–858 | DOI | MR
[16] F. Galton, Natural Inheritance, Macmillan, 1889
[17] N. Chernov, D. Dolgopyat, “Brownian Brownian Motion. I”, Mem. Amer. Math. Soc., 198, no. 927, 2009 | MR | Zbl
[18] P. M. Bleher, “Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon”, J. Statist. Phys., 66:1–2 (1992), 315–373 | DOI | MR | Zbl
[19] J. Marklof, A. Strömbergsson, “Kinetic transport in the two-dimensional periodic Lorentz gas”, Nonlinearity, 21:7 (2008), 1413–1422 | DOI | MR | Zbl
[20] J. Marklof, A. Strömbergsson, “The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems”, Ann. of Math. (to appear); , 2007 arxiv.org: 0706.4395
[21] N. Chernov, “Decay of correlations and dispersing billiards”, J. Statist. Phys., 94:3–4 (1999), 513–556 | DOI | MR | Zbl
[22] Lai-Sang Young, “Dimension, entropy and Lyapunov exponents”, Ergodic Theory Dynam. Systems, 2:1 (1982), 109–124 | MR | Zbl
[23] I. Melbourne, A. Török, “Statistical limit theorems for suspension flows”, Israel J. Math., 144:2 (2004), 191–209 | DOI | MR | Zbl
[24] M. P. Wojtkowski, “$W$-flows on Weyl manifolds and Gaussian thermostats”, J. Math. Pures Appl. (9), 79:10 (2000), 953–974 | DOI | MR | Zbl
[25] N. Chernov, H.-K. Zhang, “Billiards with polynomial mixing rates”, Nonlinearity, 18:4 (2005), 1527–1553 | DOI | MR | Zbl
[26] Ya. B. Pesin, “Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties”, Ergodic Theory Dynam. Systems, 12:1 (1992), 123–151 | DOI | MR | Zbl
[27] E. A. Sataev, “Invariant measures for hyperbolic maps with singularities”, Russian Math. Surveys, 47:1 (1992), 191–251 | DOI | MR | Zbl
[28] N. Chernov, H.-K. Zhang, “On statistical properties of hyperbolic systems with singularities” (to appear)
[29] N. Chernov, H.-K. Zhang, “Improved estimates for correlations in billiards”, Comm. Math. Phys., 277:2 (2008), 305–321 | DOI | MR | Zbl
[30] P. Billingsley, Convergence of probability measures, Wiley, New York–London–Sydney, 1968 ; P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, Fizmatlit, M., 1977 | MR | Zbl | MR
[31] D. Dolgopyat, “Limit theorems for partially hyperbolic systems”, Trans. Amer. Math. Soc., 356:4 (2004), 1637–1689 | DOI | MR | Zbl