Singular finite-gap operators and indefinite metrics
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 625-650
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In many problems the ‘real’ spectral data for periodic finite-gap operators (consisting of a Riemann surface with a distingulished ‘point at infinity’, a local parameter near this point, and a divisor of poles) generate operators with singular real coefficients. These operators are not self-adjoint in an ordinary Hilbert space of functions of a variable $x$ (with a positive metric). In particular, this happens for the Lamé operators with elliptic potential $n(n+1)\wp(x)$, whose wavefunctions were found by Hermite in the nineteenth century. However, ideas in [1]–[4] suggest that precisely such Baker–Akhiezer functions form a correct analogue of the discrete and continuous Fourier bases on Riemann surfaces. For genus $g>0$ these operators turn out to be symmetric with respect to an indefinite (not positive definite) inner product described in this paper. The analogue of the continuous Fourier transformation is an isometry in this inner product. A description is also given of the image of this Fourier transformation in the space of functions of $x\in\mathbb R$.
Bibliography: 24 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
spectral theory, singular finite-gap operators, Lamé potentials, indefinite Hilbert spaces, continuous Fourier–Laurent bases on Riemann surfaces, Calogero–Moser models.
                    
                    
                    
                  
                
                
                @article{RM_2009_64_4_a1,
     author = {P. G. Grinevich and S. P. Novikov},
     title = {Singular finite-gap operators and indefinite metrics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {625--650},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_4_a1/}
}
                      
                      
                    TY - JOUR AU - P. G. Grinevich AU - S. P. Novikov TI - Singular finite-gap operators and indefinite metrics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 625 EP - 650 VL - 64 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2009_64_4_a1/ LA - en ID - RM_2009_64_4_a1 ER -
P. G. Grinevich; S. P. Novikov. Singular finite-gap operators and indefinite metrics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 625-650. http://geodesic.mathdoc.fr/item/RM_2009_64_4_a1/
