Mots-clés : Lamé potentials
@article{RM_2009_64_4_a1,
author = {P. G. Grinevich and S. P. Novikov},
title = {Singular finite-gap operators and indefinite metrics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {625--650},
year = {2009},
volume = {64},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_4_a1/}
}
P. G. Grinevich; S. P. Novikov. Singular finite-gap operators and indefinite metrics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 625-650. http://geodesic.mathdoc.fr/item/RM_2009_64_4_a1/
[1] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 | DOI | MR | Zbl
[2] I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowsky space”, Funct. Anal. Appl., 21:4 (1987), 294–307 | DOI | MR | Zbl
[3] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, energy-momentum tensor, and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33 | DOI | MR | Zbl
[4] P. G. Grinevich, S. P. Novikov, “Topological charge of the real periodic finite-gap sine-Gordon solutions”, Comm. Pure Appl. Math., 56:7 (2003), 956–978 | DOI | MR | Zbl
[5] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmannians, $\operatorname{det}\overline\partial\sb J$ and Segal–Wilson $\tau$-function”, Problems of modern quantum field theory (Alushta, 1989), Springer, Berlin, 1989, 86–106 | MR
[6] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions. Vol. III, McGraw-Hill, New York–Toronto–London, 1955 (based, in part, on notes left by H. Bateman) | MR | MR | Zbl | Zbl
[7] T. D. Lee, “Some special examples in renormalizable field theory”, Phys. Rev. (2), 95:5 (1954), 1329–1334 | DOI | MR | Zbl
[8] G. Källén, W. Pauli, “On mathematical structure of T. D. Lee's model of a renormalizable field theory”, Danske Vid. Selsk. Mat.-Fys. Medd., 30:7 (1955), 1–23 | MR | Zbl
[9] W. Heisenberg, “Lie model in quantisation of nonlinear field equation”, Nucl. Phys., 4 (1957), 532–563 | DOI | Zbl
[10] F. A. Berezin, “On the Lee model”, Amer. Math. Soc. Transl. Ser. 2, 56 (1966), 249–272 | MR | Zbl | Zbl
[11] C. M. Bender, D. C. Brody, H. F. Jones, “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89:27 (2002), 270401 | DOI | MR
[12] L. S. Pontryagin, “Hermitian operators in a space with an indefinite metric”, Selected works. Vol. 1. Selected research papers, Classics of Soviet Mathematics, ed. R. V. Gamkrelidze, Gordon Breach Science Publishers, New York, 1986, 303–334 | MR | MR | Zbl | Zbl
[13] I. S. Iokhvidov, M. G. Krein, “Spektralnaya teoriya operatorov v prostranstvakh s indefinitnoi metrikoi”, Tr. MMO, 5 (1956), 367–432 ; I. S. Iohvidov, M. G. Krein, “Spectral theory of operators in spaces with indefinite metric. I”, Amer. Math. Soc. Transl. Ser. 2, 13 (1960), 105–175 ; Р�. РЎ. Р�РѕС...РІРёРґРѕРІ, Рњ. Р“. РљСЂРμРNoРЅ, “РЎРїРμктральная С‚РμРѕСЂРёСЏ РѕРїРμраторов РІ пространстваС... СЃ РёРЅРґРμфинитноРNo РјРμтрикоРNo. II”, РўСЂ. РњРњРћ, 8 (1959), 413–496 ; I. S. Iohvidov, M. G. Krein, “Spectral theory of operators in spaces with indefinite metric. II”, Amer. Math. Soc. Transl. Ser. 2, 34 (1963), 283–373 | MR | Zbl | MR | MR | Zbl
[14] Yu. P. Ginzburg, I. S. Iokhvidov, “The geometry of infinite-dimensional spaces with a bilinear metric”, Russian Math. Surveys, 17:4 (1962), 1–51 | DOI | MR | Zbl
[15] V. M. Buchstaber, D. V. Leikin, “Functional equations defining multiplication in a continuous Krichever–Novikov basis”, Russian Math. Surveys, 61:1 (2006), 165–167 | DOI | MR | Zbl
[16] V. M. Buchstaber, D. V. Leikin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl
[17] I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214 | DOI | MR | Zbl
[18] B. A. Dubrovin, S. M. Natanzon, “Real theta-function solutions of the Kadomtsev–Petviashvili equation”, Math. USSR-Izv., 32:2 (1989), 269–288 | DOI | MR | Zbl
[19] W. Koppelman, “Singular integral equations, boundary-value problems, and the Riemann–Roch theorem”, J. Math. Mech., 10:2 (1961), 247–277 | MR | Zbl
[20] Yu. L. Rodin, “Kraevaya zadacha Rimana dlya differentsialov na rimanovykh poverkhnostyakh”, Uchenye zapiski Permskogo un-ta, 17:2 (1960), 83–85 | MR
[21] P. G. Grinevich, A. Yu. Orlov, E. I. Schulman, “On the symmetries of the integrable systems”, Important developments in soliton theory, Springer, Berlin, 1993, 283–301 | MR | Zbl
[22] V. A. Arkadev, A. K. Pogrebkov, M. K. Polivanov, “Singulyarnye resheniya uravneniya KdV i metod obratnoi zadachi”, Zapiski nauch. sem. LOMI, 133 (1984), 17–37 | MR | Zbl
[23] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl
[24] M. M. Crum, “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6:1 (1955), 121–127 | DOI | MR | Zbl