Singular finite-gap operators and indefinite metrics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 625-650 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In many problems the ‘real’ spectral data for periodic finite-gap operators (consisting of a Riemann surface with a distingulished ‘point at infinity’, a local parameter near this point, and a divisor of poles) generate operators with singular real coefficients. These operators are not self-adjoint in an ordinary Hilbert space of functions of a variable $x$ (with a positive metric). In particular, this happens for the Lamé operators with elliptic potential $n(n+1)\wp(x)$, whose wavefunctions were found by Hermite in the nineteenth century. However, ideas in [1]–[4] suggest that precisely such Baker–Akhiezer functions form a correct analogue of the discrete and continuous Fourier bases on Riemann surfaces. For genus $g>0$ these operators turn out to be symmetric with respect to an indefinite (not positive definite) inner product described in this paper. The analogue of the continuous Fourier transformation is an isometry in this inner product. A description is also given of the image of this Fourier transformation in the space of functions of $x\in\mathbb R$. Bibliography: 24 titles.
Keywords: spectral theory, singular finite-gap operators, indefinite Hilbert spaces, continuous Fourier–Laurent bases on Riemann surfaces, Calogero–Moser models.
Mots-clés : Lamé potentials
@article{RM_2009_64_4_a1,
     author = {P. G. Grinevich and S. P. Novikov},
     title = {Singular finite-gap operators and indefinite metrics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {625--650},
     year = {2009},
     volume = {64},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_4_a1/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - S. P. Novikov
TI  - Singular finite-gap operators and indefinite metrics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 625
EP  - 650
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_4_a1/
LA  - en
ID  - RM_2009_64_4_a1
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A S. P. Novikov
%T Singular finite-gap operators and indefinite metrics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 625-650
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2009_64_4_a1/
%G en
%F RM_2009_64_4_a1
P. G. Grinevich; S. P. Novikov. Singular finite-gap operators and indefinite metrics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 625-650. http://geodesic.mathdoc.fr/item/RM_2009_64_4_a1/

[1] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 | DOI | MR | Zbl

[2] I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowsky space”, Funct. Anal. Appl., 21:4 (1987), 294–307 | DOI | MR | Zbl

[3] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, energy-momentum tensor, and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33 | DOI | MR | Zbl

[4] P. G. Grinevich, S. P. Novikov, “Topological charge of the real periodic finite-gap sine-Gordon solutions”, Comm. Pure Appl. Math., 56:7 (2003), 956–978 | DOI | MR | Zbl

[5] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmannians, $\operatorname{det}\overline\partial\sb J$ and Segal–Wilson $\tau$-function”, Problems of modern quantum field theory (Alushta, 1989), Springer, Berlin, 1989, 86–106 | MR

[6] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions. Vol. III, McGraw-Hill, New York–Toronto–London, 1955 (based, in part, on notes left by H. Bateman) | MR | MR | Zbl | Zbl

[7] T. D. Lee, “Some special examples in renormalizable field theory”, Phys. Rev. (2), 95:5 (1954), 1329–1334 | DOI | MR | Zbl

[8] G. Källén, W. Pauli, “On mathematical structure of T. D. Lee's model of a renormalizable field theory”, Danske Vid. Selsk. Mat.-Fys. Medd., 30:7 (1955), 1–23 | MR | Zbl

[9] W. Heisenberg, “Lie model in quantisation of nonlinear field equation”, Nucl. Phys., 4 (1957), 532–563 | DOI | Zbl

[10] F. A. Berezin, “On the Lee model”, Amer. Math. Soc. Transl. Ser. 2, 56 (1966), 249–272 | MR | Zbl | Zbl

[11] C. M. Bender, D. C. Brody, H. F. Jones, “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89:27 (2002), 270401 | DOI | MR

[12] L. S. Pontryagin, “Hermitian operators in a space with an indefinite metric”, Selected works. Vol. 1. Selected research papers, Classics of Soviet Mathematics, ed. R. V. Gamkrelidze, Gordon Breach Science Publishers, New York, 1986, 303–334 | MR | MR | Zbl | Zbl

[13] I. S. Iokhvidov, M. G. Krein, “Spektralnaya teoriya operatorov v prostranstvakh s indefinitnoi metrikoi”, Tr. MMO, 5 (1956), 367–432 ; I. S. Iohvidov, M. G. Krein, “Spectral theory of operators in spaces with indefinite metric. I”, Amer. Math. Soc. Transl. Ser. 2, 13 (1960), 105–175 ; Р�. РЎ. Р�РѕС...РІРёРґРѕРІ, Рњ. Р“. РљСЂРμРNoРЅ, “РЎРїРμктральная С‚РμРѕСЂРёСЏ РѕРїРμраторов РІ пространстваС... СЃ РёРЅРґРμфинитноРNo РјРμтрикоРNo. II”, РўСЂ. РњРњРћ, 8 (1959), 413–496 ; I. S. Iohvidov, M. G. Krein, “Spectral theory of operators in spaces with indefinite metric. II”, Amer. Math. Soc. Transl. Ser. 2, 34 (1963), 283–373 | MR | Zbl | MR | MR | Zbl

[14] Yu. P. Ginzburg, I. S. Iokhvidov, “The geometry of infinite-dimensional spaces with a bilinear metric”, Russian Math. Surveys, 17:4 (1962), 1–51 | DOI | MR | Zbl

[15] V. M. Buchstaber, D. V. Leikin, “Functional equations defining multiplication in a continuous Krichever–Novikov basis”, Russian Math. Surveys, 61:1 (2006), 165–167 | DOI | MR | Zbl

[16] V. M. Buchstaber, D. V. Leikin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl

[17] I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214 | DOI | MR | Zbl

[18] B. A. Dubrovin, S. M. Natanzon, “Real theta-function solutions of the Kadomtsev–Petviashvili equation”, Math. USSR-Izv., 32:2 (1989), 269–288 | DOI | MR | Zbl

[19] W. Koppelman, “Singular integral equations, boundary-value problems, and the Riemann–Roch theorem”, J. Math. Mech., 10:2 (1961), 247–277 | MR | Zbl

[20] Yu. L. Rodin, “Kraevaya zadacha Rimana dlya differentsialov na rimanovykh poverkhnostyakh”, Uchenye zapiski Permskogo un-ta, 17:2 (1960), 83–85 | MR

[21] P. G. Grinevich, A. Yu. Orlov, E. I. Schulman, “On the symmetries of the integrable systems”, Important developments in soliton theory, Springer, Berlin, 1993, 283–301 | MR | Zbl

[22] V. A. Arkadev, A. K. Pogrebkov, M. K. Polivanov, “Singulyarnye resheniya uravneniya KdV i metod obratnoi zadachi”, Zapiski nauch. sem. LOMI, 133 (1984), 17–37 | MR | Zbl

[23] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl

[24] M. M. Crum, “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6:1 (1955), 121–127 | DOI | MR | Zbl