Permutations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 583-624 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Decompositions into cycles for random permutations of a large number of elements are very different (in their statistics) from the same decompositions for algebraic permutations (defined by linear or projective transformations of finite sets). This paper presents tables giving both these and other statistics, as well as a comparison of them with the statistics of involutions or permutations with all their cycles of even length. The inclusions of a point in cycles of various lengths turn out to be equiprobable events for random permutations. The number of permutations of $2N$ elements with all cycles of even length turns out to be the square of an integer (namely, of $(2N-1)!!$). The number of cycles of projective permutations (over a field with an odd prime number of elements) is always even. These and other empirically discovered theorems are proved in the paper. Bibliography: 6 titles.
Keywords: Young diagrams, symmetric group, modular group, projective geometry, statistics, randomness.
Mots-clés : cycles, involutions
@article{RM_2009_64_4_a0,
     author = {V. I. Arnold},
     title = {Permutations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {583--624},
     year = {2009},
     volume = {64},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_4_a0/}
}
TY  - JOUR
AU  - V. I. Arnold
TI  - Permutations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 583
EP  - 624
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_4_a0/
LA  - en
ID  - RM_2009_64_4_a0
ER  - 
%0 Journal Article
%A V. I. Arnold
%T Permutations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 583-624
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2009_64_4_a0/
%G en
%F RM_2009_64_4_a0
V. I. Arnold. Permutations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 4, pp. 583-624. http://geodesic.mathdoc.fr/item/RM_2009_64_4_a0/

[1] F. J. Dyson, H. Falk, “Period of a discrete cat mapping”, Amer. Math. Monthly, 99:7 (1992), 603–614 | DOI | MR | Zbl

[2] V. I. Arnold, “Stokhasticheskie i deterministskie statistiki orbit v khaoticheski vyglyadyaschikh dinamicheskikh sistemakh”, Tr. MMO, 70, URSS, M., 2009

[3] V. I. Arnol'd, “Statistics of Young diagrams of cycles of dynamical systems for finite tori automorphisms”, Mosc. Math. J., 6:1 (2006), 43–56 | MR | Zbl

[4] V. I. Arnold, Eksperimentalnoe nablyudenie matematicheskikh faktov, MTsNMO, M., 2006

[5] V. L. Goncharov, “On the field of combinatory analysis”, Amer. Math. Soc. Transl. Ser. 2, 19 (1962), 1–46 | MR | Zbl | Zbl

[6] A. N. Kolmogoroff, “Sulla determinazione empirica di una legge di distribuzione”, Giorn. Ist. Ital. Attuari, 4:1 (1933), 83–91 ; A. N. Kolmogorov, “Ob empiricheskom opredelenii zakona raspredeleniya”, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1986, 134–141 | Zbl | MR | Zbl