Steenrod homotopy
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 3, pp. 469-551 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Steenrod homotopy theory is a natural framework for doing algebraic topology on general spaces in terms of algebraic topology of polyhedra; or from a different viewpoint, it studies the topology of the $\lim^1$ functor (for inverse sequences of groups). This paper is primarily concerned with the case of compacta, in which Steenrod homotopy coincides with strong shape. An attempt is made to simplify the foundations of the theory and to clarify and improve some of its major results. With geometric tools such as Milnor's telescope compactification, comanifolds (=mock bundles), and the Pontryagin–Thom construction, new simple proofs are obtained for results by Barratt–Milnor, Geoghegan–Krasinkiewicz, Dydak, Dydak–Segal, Krasinkiewicz–Minc, Cathey, Mittag-Leffler–Bourbaki, Fox, Eda–Kawamura, Edwards–Geoghegan, Jussila, and for three unpublished results by Shchepin. An error in Lisitsa's proof of the ‘Hurewicz theorem in Steenrod homotopy’ is corrected. It is shown that over compacta, R. H. Fox's overlayings are equivalent to I. M. James' uniform covering maps. Other results include: $\bullet$ A morphism between inverse sequences of countable (possibly non-Abelian) groups that induces isomorphisms on $\lim$ and $\lim^1$ is invertible in the pro-category. This implies the ‘Whitehead theorem in Steenrod homotopy’, thereby answering two questions of Koyama. $\bullet$ If $X$ is an $LC_{n-1}$-compactum, $n\geqslant 1$, then its $n$-dimensional Steenrod homotopy classes are representable by maps $S^n\to\nobreak X$, provided that $X$ is simply connected. The assumption of simple connectedness cannot be dropped, by a well-known result of Dydak and Zdravkovska. $\bullet$ A connected compactum is Steenrod connected (=pointed 1-movable), if and only if every uniform covering space of it has countably many uniform connected components. Bibliography: 117 titles.
@article{RM_2009_64_3_a1,
     author = {S. A. Melikhov},
     title = {Steenrod homotopy},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {469--551},
     year = {2009},
     volume = {64},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_3_a1/}
}
TY  - JOUR
AU  - S. A. Melikhov
TI  - Steenrod homotopy
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 469
EP  - 551
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_3_a1/
LA  - en
ID  - RM_2009_64_3_a1
ER  - 
%0 Journal Article
%A S. A. Melikhov
%T Steenrod homotopy
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 469-551
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2009_64_3_a1/
%G en
%F RM_2009_64_3_a1
S. A. Melikhov. Steenrod homotopy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 3, pp. 469-551. http://geodesic.mathdoc.fr/item/RM_2009_64_3_a1/

[1] S. A. Melikhov, Colored finite type invariants and a multi-variable analogue of the Conway polynomial, arXiv: math/0312007

[2] D. P. Sinha, The topology of spaces of knots, arXiv: math/0202287

[3] S. A. Melikhov, “A polynomial compactification of configuration spaces and resolution of the Thom–Boardman singularities” (to appear)

[4] R. Budney, J. Conant, K. P. Scannell, D. Sinha, “New perspectives on self-linking”, Adv. Math., 191:1 (2005), 78–113 ; arXiv: math/0303034 | DOI | MR | Zbl

[5] I. Volić, “Configuration space integrals and Taylor towers for spaces of knots”, Topology Appl., 153:15 (2006), 2893–2904 ; arXiv: math/0401282 | DOI | MR | Zbl

[6] I. Volić, “Finite type knot invariants and calculus of functors”, Compos. Math., 142:1 (2006), 222–250 ; arXiv: math/0401440 | DOI | MR | Zbl

[7] R. Koytcheff, A homotopy-theoretic view of Bott–Taubes integrals and knot spaces, arXiv: abs/0810.1785

[8] M. N. Gusarov, “Variations of knotted graphs. The geometric technique of $n$-equivalence”, St. Petersburg Math. J., 12 (2000), 569–604 ; http://www.math.toronto.edu/\allowbreakd̃rorbn/ Goussarov/ | MR | Zbl

[9] K. Habiro, “Claspers and finite type invariants of links”, Geom. Topol., 4 (2000), 1–83 ; arXiv: math/0001185 | DOI | MR | Zbl

[10] S. A. Melikhov, E. V. Shchepin, The telescope approach to embeddability of compacta, arXiv: math/0612085

[11] J. R. Isbell, Uniform spaces, Mathematical Surveys, 12, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl

[12] G. E. Bredon, Sheaf theory, 2nd ed., Grad. Texts in Math., 170, Springer-Verlag, New York, 1997 ; G. E. Bredon, Teoriya puchkov, Nauka, M., 1988 | MR | Zbl | MR | Zbl

[13] J. Milnor, “On the Steenrod homology theory”, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995, 79–96 ; http://www.maths.ed.ac.uk/ãar/books/novikov2.pdf | MR | Zbl

[14] E. H. Spanier, Algebraic topology, McGraw-Hill, New York–Toronto–London, 1966 | MR | MR | Zbl | Zbl

[15] W. S. Massey, Homology and cohomology theory. An approach based on Alexander–Spanier cochains, Monogr. Textbooks Pure Appl. Math., 46, Dekker, New York–Basel, 1978 | MR | Zbl

[16] A. Borel, J. C. Moore, “Homology theory for locally compact spaces”, Michigan Math. J., 7 (1960), 137–159 | DOI | MR | Zbl

[17] E. G. Sklyarenko, “Homology and cohomology theories of general spaces”, General topology II, Encycl. Math. Sci., 50, Springer, Berlin, 1996, 119–246 | MR | Zbl | Zbl

[18] M. G. Barratt, J. W. Milnor, “An example of anomalous singular homology”, Proc. Amer. Math. Soc., 13 (1962), 293–297 | DOI | MR | Zbl

[19] R. E. Williamson, Jr., “Cobordism of combinatorial manifolds”, Ann. of Math. (2), 83 (1966), 1–33 | DOI | MR | Zbl

[20] Y. Kodama, “Fine movability”, J. Math. Soc. Japan, 30:1 (1978), 101–116 | DOI | MR | Zbl

[21] S. Ferry, “A stable converse to the Vietoris–Smale theorem with applications to shape theory”, Trans. Amer. Math. Soc., 261:2 (1980), 369–386 | DOI | MR | Zbl

[22] D. A. Edwards, H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math., 542, Springer, 1976 | DOI | MR | Zbl

[23] J. Dydak, J. Segal, “Strong shape theory”, Dissertationes Math. (Rozprawy Mat.), 192 (1981), 39 p. ; announced in: J. Dydak, J. Segal, “Strong shape theory: a geometrical approach”, Proceedings of the 1978 Topology Conference, Vol. I (Univ. Oklahoma, Norman, OK, 1978), Topology Proc., 3, no. 1, 1978, 59–72 ; surveyed in: J. Dydak, “Strong shape theory, a survey of results”, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, 121–126 | MR | Zbl | MR | Zbl | Zbl

[24] Y. Kodama, J. Ono, “On fine shape theory”, Fund. Math., 105 (1979), 29–39 ; Y. Kodama, J. Ono, “On fine shape theory. II”, Fund. Math., 108:2 (1980), 89–98 ; Y. Kodama, “On fine shape theory. III”, Glas. Mat. Ser. III, 16:2 (1981), 369–375 | MR | Zbl | MR | Zbl | MR | Zbl

[25] F. Cathey, “Strong shape theory”, Shape theory and geometric topology (Dubrovnik, 1981), Lecture Notes in Math., 870, Springer, Berlin–New York, 1981, 215–238 | DOI | MR | Zbl

[26] Y. Iwamoto, K. Sakai, “Strong $n$-shape theory”, Proceedings of the International Conference on Topology and its Applications (Yokohama, 1999), Topology Appl., 122, no. 1–2, 2002, 253–267 | DOI | MR | Zbl

[27] S. Mardešić, J. Segal, Shape theory. The inverse system approach, North-Holland Math. Library, 26, North-Holland, Amsterdam–New York, 1982 | MR | Zbl

[28] R. H. Fox, “On shape”, Fund. Math., 74:1 (1972), 47–71 | MR | Zbl

[29] J. Dydak, J. Segal, Shape theory. An introduction, Lecture Notes in Math., 688, no. 150 p., Springer-Verlag, Berlin, 1978 | DOI | MR | Zbl

[30] T. Porter, “Čech and Steenrod homotopy and the Quigley exact couple in strong shape and proper homotopy theory”, J. Pure Appl. Algebra, 24:3 (1982), 303–312 | DOI | MR | Zbl

[31] J. Segal, S. Spie.{z}, B. Günther, “Strong shape of uniform spaces”, Topology Appl., 49:3 (1993), 237–249 | DOI | MR | Zbl

[32] D. E. Christie, “Net homotopy for compacta”, Trans. Amer. Math. Soc., 56 (1944), 275–308 | DOI | MR | Zbl

[33] J. B. Quigley, “An exact sequence from the $n$th to the $(n-1)$st fundamental group”, Fund. Math., 77 (1973), 195–210 | MR | Zbl

[34] N. E. Steenrod, “Regular cycles of compact metric spaces”, Ann. of Math. (2), 41:4 (1940), 833–851 | DOI | MR | Zbl

[35] L. S. Pontrjagin, “Über den algebraischen Inhalt topologischer Dualitätssätze”, Math. Ann., 105:1 (1931), 165–205 ; L. S. Pontryagin, “Ob algebraicheskom soderzhanii topologicheskikh teorem dvoistvennosti”, Izbrannye nauchnye trudy, t. 1, Nauka, M., 1988, 65–105 | DOI | MR | Zbl | MR | Zbl

[36] D. Doitchinov, “Uniform shape and uniform Čech homology and cohomology groups for metric spaces”, Fund. Math., 102:3 (1979), 209–218 | MR | Zbl

[37] T. Miyata, “Homology, cohomology, and uniform shape”, Glas. Mat. Ser. III, 30:1 (1995), 85–109 | MR | Zbl

[38] V. Agaronjan, Yu. M. Smirnov, “The shape theory for uniform spaces and the shape uniform invariants”, Comment. Math. Univ. Carolin., 19:2 (1978), 351–357 | MR | Zbl

[39] E. Čech, “Théorie générale de l'homologie dans un espace quelconque”, Fund. Math., 19 (1932), 149–183 | Zbl

[40] S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloq. Publ., 27, Amer. Math. Soc., New York, 1942 | MR | Zbl

[41] S. Eilenberg, N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, NJ, 1952 | MR | Zbl

[42] Y. Kodama, “On embeddings of spaces into ANR and shapes”, J. Math. Soc. Japan, 27:4 (1975), 533–544 | DOI | MR | Zbl

[43] J. Krasinkiewicz, “On a method of constructing ANR-sets. An application of inverse limits”, Fund. Math., 92:2 (1976), 95–112 | MR | Zbl

[44] T. A. Chapman, L. C. Siebenmann, “Finding a boundary for a Hilbert cube manifold”, Acta Math., 137:3–4 (1976), 171–208 | DOI | MR | Zbl

[45] Y. Kodama, J. Ono, T. Watanabe, “AR associated with ANR-sequence and shape”, General Topology Appl., 9:2 (1978), 71–88 | DOI | MR | Zbl

[46] L. C. Siebenmann, “Chapman's classification of shapes: a proof using collapsing”, Manuscripta Math., 16:4 (1975), 373–384 | DOI | MR | Zbl

[47] R. C. Lacher, “Cell-like spaces”, Proc. Amer. Math. Soc., 20:2 (1969), 598–602 | DOI | MR | Zbl

[48] B. Günther, “Semigroup structures on derived limits”, J. Pure Appl. Algebra, 69:1 (1990), 51–65 | DOI | MR | Zbl

[49] R. Geoghegan, J. Krasinkiewicz, “Empty components in strong shape theory”, Topology Appl., 41:3 (1991), 213–233 | DOI | MR | Zbl

[50] J. B. Quigley, “Equivalence of fundamental and approaching groups of movable pointed compacta”, Fund. Math., 91 (1976), 73–83 | MR | Zbl

[51] J. W. Grossman, “Homotopy classes of maps between pro-spaces”, Michigan Math. J., 21:4 (1974), 355–362 | DOI | MR | Zbl

[52] T. Watanabe, “On a problem of Y. Kodama”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25:10 (1977), 981–985 | MR | Zbl

[53] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., 304, Springer-Verlag, Berlin–New York, 1972 | DOI | MR | Zbl

[54] K. Iriye, “The first derived functor of the inverse limit and localization”, J. Pure Appl. Algebra, 173:1 (2002), 7–14 | DOI | MR | Zbl

[55] B. I. Gray, “Spaces of the same $n$-type, for all $n$”, Topology, 5:3 (1966), 241–243 | DOI | MR | Zbl

[56] R. Geoghegan, “A note on the vanishing of $\mathrm{lim}^{1}$”, J. Pure Appl. Algebra, 17:1 (1980), 113–116 | DOI | MR | Zbl

[57] C. A. McGibbon, J. M. Møller, “On spaces with the same $n$-type for all $n$”, Topology, 31:1 (1992), 177–201 | DOI | MR | Zbl

[58] R. Geoghegan, Topological methods in group theory, Grad. Texts in Math., 243, Springer, New York, 2008 | DOI | MR | Zbl

[59] M. Artin, B. Mazur, Etale homotopy, Lecture Notes in Math., 100, Springer-Verlag, Berlin–New York, 1969 | DOI | MR | Zbl

[60] A. Koyama, “A Whitehead-type theorem in fine shape theory”, Glas. Mat. Ser. III, 18:2 (1983), 359–370 | MR | Zbl

[61] Yu. T. Lisitsa, “Hurewicz and Whitehead theorems in the strong shape theory”, Soviet Math. Dokl., 32:1 (1985), 36–39 | MR | Zbl

[62] J. Keesling, “Algebraic invariants in shape theory”, Topology Proceedings, Vol. 1 (Auburn, AL, 1976), Auburn Univ., Auburn, 1977, 115–124 | MR | Zbl

[63] L. C. Siebenmann, “Infinite simple homotopy types”, Indag. Math., 32 (1970), 479–495 | MR | Zbl

[64] D. A. Edwards, R. Geoghegan, “Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction”, Ann. Math. (2), 101 (1975), 521–535 | DOI | MR | Zbl

[65] D. A. Edwards, R. Geoghegan, “The stability problem in shape, and a Whitehead theorem in pro-homotopy”, Trans. Amer. Math. Soc., 214 (1975), 261–277 | DOI | MR | Zbl

[66] J. Dydak, “A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR's”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25:1 (1977), 55–62 | MR | Zbl

[67] J. Dydak, “The Whitehead and the Smale theorems in shape theory”, Dissertationes Math. (Rozprawy Mat.), 156 (1979), 55 p | MR | Zbl

[68] Y. Kodama, “A characteristic property of a finite-dimensional pointed FANR”, Japan J. Math. (N. S.), 4:2 (1978), 445–460 | MR | Zbl

[69] S. Ferry, A. Ranicki, “A survey of Wall's finiteness obstruction”, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., 149, Princeton Univ. Press, Princeton, NJ, 2001, 63–79 ; arXiv: math/0008070 | MR | Zbl

[70] J. Dydak, “Local $n$-connectivity of quotient spaces and one-point compactifications”, Shape theory and geometric topology (Dubrovnik, 1981), Lecture Notes in Math., 870, Springer, Berlin–New York, 1981, 48–72 | DOI | MR | Zbl

[71] J. Dydak, “Relations between homology and homotopy pro-groups of continua”, The Proceedings of the 1981 Topology Conference (Blacksburg, VA, 1981), Topology Proc., 6, no. 2, 1981, 267–278 | MR | Zbl

[72] S. Mardešić, T. B. Rushing, “Shape fibrations. I”, General Topology Appl., 9:3 (1978), 193–215 | DOI | MR | Zbl

[73] F. Cathey, “Shape fibrations and strong shape theory”, Topology Appl., 14:1 (1982), 13–30 | DOI | MR | Zbl

[74] S. Bogatyi, “The Vietoris theorem for shapes, inverse limits, and a certain problem of Ju. M. Smirnov”, Soviet Math. Dokl., 14 (1973), 1089–1094 | MR | Zbl

[75] K. Kuperberg, “Two Vietoris-type isomorphism theorems in Borsuk's theory of shape, concerning the Vietoris–Cech homology and Borsuk's fundamental groups”, Studies in topology (Charlotte, NC, 1974), Academic Press, New York, 1975, 285–314 | MR | Zbl

[76] S. Ferry, “Remarks on Steenrod homology”, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 148–166 ; http://www.maths.ed.ac.uk/\allowbreakãar/books/novikov2.pdf | MR | Zbl

[77] J. H. C. Whitehead, “A certain exact sequence”, Ann. of Math. (2), 52:1 (1950), 51–110 | DOI | MR | Zbl

[78] Y. Kodama, A. Koyama, “Hurewicz isomorphism theorem for Steenrod homology”, Proc. Amer. Math. Soc., 74:2 (1979), 363–367 | DOI | MR | Zbl

[79] Y. Kodama, “Generalization of movability and Hurewicz's isomorphism theorem for Steenrod homology”, Russian Math. Surveys, 34:6 (1979), 57–59 | DOI | MR | Zbl | Zbl

[80] K. Kuperberg, “A note on the Hurewicz isomorphism theorem in Borsuk's theory of shape”, Fund. Math., 90:2 (1976), 173–175 | MR | Zbl

[81] J. Dydak, “Concerning the abelization of the first shape group of pointed continua”, Bull. Acad. Polon. Sci. Sér. Sci. Math Astronom. Phys., 24 (1976), 615–620 | MR | Zbl

[82] S. A. Melikhov, “Isotopic and continuous realizability of maps in the metastable range”, Sb. Math., 195:7–8 (2004), 983–1016 | DOI | MR | Zbl

[83] R. M. Vogt, “On the dual of a lemma of Milnor”, Proceedings of the Advanced Study Institute on Algebraic Topology, Vol. III (1970), Various Publ. Ser., 13, Mat. Inst., Aarhus Univ., Aarhus, 1970, 632–648 | MR | Zbl

[84] K. Eda, K. Kawamura, “The singular homology of the Hawaiian earring”, J. London Math. Soc. (2), 62:1 (2000), 305–310 | DOI | MR | Zbl

[85] K. Eda, K. Kawamura, “Homotopy and homology groups of the $n$-dimensional Hawaiian earring”, Fund. Math., 165:1 (2000), 17–28 | MR | Zbl

[86] S. Zdravkovska, “An example in shape theory”, Proc. Amer. Math. Soc., 83:3 (1981), 594–596 | DOI | MR | Zbl

[87] W. Hurewicz, “Homologie, Homotopie und lokaler Zusammenhang”, Fund. Math., 25 (1935), 467–485 | Zbl

[88] K. Borsuk, “On the $n$-movability”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 20 (1972), 859–864 | MR | Zbl

[89] J. Dydak, J. Segal, “Local $n$-connectivity of decomposition spaces”, Topology Appl., 18:1 (1984), 43–58 | DOI | MR | Zbl

[90] S. Ferry, “Homotoping $\varepsilon$-maps to homeomorphisms”, Amer J. Math., 101:3 (1979), 567–582 | DOI | MR | Zbl

[91] D. J. Garity, J. P. Henderson, D. G. Wright, “Menger spaces and inverse limits”, Pacific J. Math., 131:2 (1988), 249–259 | MR | Zbl

[92] W. J. R. Mitchell, D. Repovš, E. V. Ščepin, “On 1-cycles and the finite dimensionality of homology 4-manifolds”, Topology, 31:3 (1992), 605–623 | DOI | MR | Zbl

[93] K. Eda, K. Kawamura, “The surjectivity of the canonical homomorphism from singular homology to Čech homology”, Proc. Amer. Math. Soc., 128:5 (2000), 1487–1495 | DOI | MR | Zbl

[94] O. Jussila, “On homology theories in locally connected spaces”, Ann. Acad. Sci. Fenn. Ser. A I, 340 (1964), 15 p. ; O. Jussila, “On homology theories in locally connected spaces. II”, Ann. Acad. Sci. Fenn. Ser. A I, 378 (1965), 8 p | MR | Zbl | MR | Zbl

[95] S. Mardešić, “Comparison of singular and Čech homology in locally connected spaces”, Michigan Math. J., 6 (1959), 151–166 | DOI | MR | Zbl

[96] S. Buoncristiano, C. P. Rourke, B. J. Sanderson, A geometric approach to homology theory, London Math. Soc. Lecture Note Ser., 18, Cambridge Univ. Press, Cambridge–New York–Melbourne, 1976 | MR | Zbl

[97] K. Eda, U. Karimov, D. Repovš, “On (co)homology locally connected spaces”, Topology Appl., 120:3 (2002), 397–401 | DOI | MR | Zbl

[98] J. Dydak, “Steenrod homology and local connectedness”, Proc. Amer. Math. Soc., 98:1 (1986), 153–157 | DOI | MR | Zbl

[99] D. R. McMillan, Jr., “One-dimensional shape properties and three-manifolds”, Studies in topology (Charlotte, NC, 1974), Academic Press, New York, 1975, 367–381 | MR | Zbl

[100] N. Shrikhande, “Homotopy properties of decomposition spaces”, Fund. Math., 116:2 (1983), 119–124 | MR | Zbl

[101] R. H. Fox, “Shape theory and covering spaces”, Topology Conference (Blacksburg, VA, 1973), Lecture Notes in Math., 375, Springer, Berlin, 1974, 71–90 | DOI | MR | Zbl

[102] T. T. Moore, “On Fox's theory of overlays”, Fund. Math., 99:3 (1978), 205–211 | MR | Zbl

[103] S. Mardešić, V. Matijević, “Classifying overlay structures of topological spaces”, Topology Appl., 113:1–3 (2001), 167–209 | DOI | MR | Zbl

[104] M. F. Atiyah, G. B. Segal, “Equivariant $K$-theory and its completion”, J. Differential Geometry, 3 (1969), 1–18 | MR | Zbl

[105] L. J. Hernández-Paricio, “Fundamental pro-groupoids and covering projections”, Fund. Math., 156:1 (1998), 1–31 | MR | Zbl

[106] N. Brodskiy, J. Dydak, B. Labuz, A. Mitra, Rips complexes and covers in the uniform category, arXiv: abs/0706.3937

[107] J. Vilímovský, “Uniform quotients of metrizable spaces”, Fund. Math., 127:1 (1987), 51–55 | MR | Zbl

[108] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[109] V. Runde, A taste of topology, Universitext, Springer, New York, 2005 | DOI | MR | Zbl

[110] B. LaBuz, Inverse limits of uniform covering maps, arXiv: abs/0808.4119

[111] V. M. Bukhshtaber, A. V. Shokurov, “The Landweber–Novikov algebra and formal vector fields on the line”, Funct. Anal. Appl., 12:3 (1978), 159–168 | DOI | MR | Zbl

[112] V. M. Bukhshtaber, “Groups of polynomial transformations of a line, non-formal symplectic manifolds, and the Landweber–Novikov algebra”, Russian Math. Surveys, 54:4 (1999), 837–838 | DOI | MR | Zbl

[113] I. K. Babenko, S. A. Bogatyi, “On the group of substitutions of formal power series with integer coefficients”, Izv. Math., 72:2 (2008), 241–264 | DOI | MR | Zbl

[114] D. L. Johnson, “The group of formal power series under substitution”, J. Austral. Math. Soc. Ser. A, 45:3 (1988), 296–302 | DOI | MR | Zbl

[115] J. Krasinkiewicz, “Continuous images of continua and $1$-movability”, Fund. Math., 98:2 (1978), 141–164 | MR | Zbl

[116] J. Krasinkiewicz, “On pointed $1$-movability and related notions”, Fund. Math., 114:1 (1981), 29–52 | MR | Zbl

[117] J. Krasinkiewicz, P. Minc, “Generalized paths and pointed 1-movability”, Fund. Math., 104:2 (1979), 141–153 | MR | Zbl