@article{RM_2009_64_3_a1,
author = {S. A. Melikhov},
title = {Steenrod homotopy},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {469--551},
year = {2009},
volume = {64},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_3_a1/}
}
S. A. Melikhov. Steenrod homotopy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 3, pp. 469-551. http://geodesic.mathdoc.fr/item/RM_2009_64_3_a1/
[1] S. A. Melikhov, Colored finite type invariants and a multi-variable analogue of the Conway polynomial, arXiv: math/0312007
[2] D. P. Sinha, The topology of spaces of knots, arXiv: math/0202287
[3] S. A. Melikhov, “A polynomial compactification of configuration spaces and resolution of the Thom–Boardman singularities” (to appear)
[4] R. Budney, J. Conant, K. P. Scannell, D. Sinha, “New perspectives on self-linking”, Adv. Math., 191:1 (2005), 78–113 ; arXiv: math/0303034 | DOI | MR | Zbl
[5] I. Volić, “Configuration space integrals and Taylor towers for spaces of knots”, Topology Appl., 153:15 (2006), 2893–2904 ; arXiv: math/0401282 | DOI | MR | Zbl
[6] I. Volić, “Finite type knot invariants and calculus of functors”, Compos. Math., 142:1 (2006), 222–250 ; arXiv: math/0401440 | DOI | MR | Zbl
[7] R. Koytcheff, A homotopy-theoretic view of Bott–Taubes integrals and knot spaces, arXiv: abs/0810.1785
[8] M. N. Gusarov, “Variations of knotted graphs. The geometric technique of $n$-equivalence”, St. Petersburg Math. J., 12 (2000), 569–604 ; http://www.math.toronto.edu/\allowbreakd̃rorbn/ Goussarov/ | MR | Zbl
[9] K. Habiro, “Claspers and finite type invariants of links”, Geom. Topol., 4 (2000), 1–83 ; arXiv: math/0001185 | DOI | MR | Zbl
[10] S. A. Melikhov, E. V. Shchepin, The telescope approach to embeddability of compacta, arXiv: math/0612085
[11] J. R. Isbell, Uniform spaces, Mathematical Surveys, 12, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl
[12] G. E. Bredon, Sheaf theory, 2nd ed., Grad. Texts in Math., 170, Springer-Verlag, New York, 1997 ; G. E. Bredon, Teoriya puchkov, Nauka, M., 1988 | MR | Zbl | MR | Zbl
[13] J. Milnor, “On the Steenrod homology theory”, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995, 79–96 ; http://www.maths.ed.ac.uk/ãar/books/novikov2.pdf | MR | Zbl
[14] E. H. Spanier, Algebraic topology, McGraw-Hill, New York–Toronto–London, 1966 | MR | MR | Zbl | Zbl
[15] W. S. Massey, Homology and cohomology theory. An approach based on Alexander–Spanier cochains, Monogr. Textbooks Pure Appl. Math., 46, Dekker, New York–Basel, 1978 | MR | Zbl
[16] A. Borel, J. C. Moore, “Homology theory for locally compact spaces”, Michigan Math. J., 7 (1960), 137–159 | DOI | MR | Zbl
[17] E. G. Sklyarenko, “Homology and cohomology theories of general spaces”, General topology II, Encycl. Math. Sci., 50, Springer, Berlin, 1996, 119–246 | MR | Zbl | Zbl
[18] M. G. Barratt, J. W. Milnor, “An example of anomalous singular homology”, Proc. Amer. Math. Soc., 13 (1962), 293–297 | DOI | MR | Zbl
[19] R. E. Williamson, Jr., “Cobordism of combinatorial manifolds”, Ann. of Math. (2), 83 (1966), 1–33 | DOI | MR | Zbl
[20] Y. Kodama, “Fine movability”, J. Math. Soc. Japan, 30:1 (1978), 101–116 | DOI | MR | Zbl
[21] S. Ferry, “A stable converse to the Vietoris–Smale theorem with applications to shape theory”, Trans. Amer. Math. Soc., 261:2 (1980), 369–386 | DOI | MR | Zbl
[22] D. A. Edwards, H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math., 542, Springer, 1976 | DOI | MR | Zbl
[23] J. Dydak, J. Segal, “Strong shape theory”, Dissertationes Math. (Rozprawy Mat.), 192 (1981), 39 p. ; announced in: J. Dydak, J. Segal, “Strong shape theory: a geometrical approach”, Proceedings of the 1978 Topology Conference, Vol. I (Univ. Oklahoma, Norman, OK, 1978), Topology Proc., 3, no. 1, 1978, 59–72 ; surveyed in: J. Dydak, “Strong shape theory, a survey of results”, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, 121–126 | MR | Zbl | MR | Zbl | Zbl
[24] Y. Kodama, J. Ono, “On fine shape theory”, Fund. Math., 105 (1979), 29–39 ; Y. Kodama, J. Ono, “On fine shape theory. II”, Fund. Math., 108:2 (1980), 89–98 ; Y. Kodama, “On fine shape theory. III”, Glas. Mat. Ser. III, 16:2 (1981), 369–375 | MR | Zbl | MR | Zbl | MR | Zbl
[25] F. Cathey, “Strong shape theory”, Shape theory and geometric topology (Dubrovnik, 1981), Lecture Notes in Math., 870, Springer, Berlin–New York, 1981, 215–238 | DOI | MR | Zbl
[26] Y. Iwamoto, K. Sakai, “Strong $n$-shape theory”, Proceedings of the International Conference on Topology and its Applications (Yokohama, 1999), Topology Appl., 122, no. 1–2, 2002, 253–267 | DOI | MR | Zbl
[27] S. Mardešić, J. Segal, Shape theory. The inverse system approach, North-Holland Math. Library, 26, North-Holland, Amsterdam–New York, 1982 | MR | Zbl
[28] R. H. Fox, “On shape”, Fund. Math., 74:1 (1972), 47–71 | MR | Zbl
[29] J. Dydak, J. Segal, Shape theory. An introduction, Lecture Notes in Math., 688, no. 150 p., Springer-Verlag, Berlin, 1978 | DOI | MR | Zbl
[30] T. Porter, “Čech and Steenrod homotopy and the Quigley exact couple in strong shape and proper homotopy theory”, J. Pure Appl. Algebra, 24:3 (1982), 303–312 | DOI | MR | Zbl
[31] J. Segal, S. Spie.{z}, B. Günther, “Strong shape of uniform spaces”, Topology Appl., 49:3 (1993), 237–249 | DOI | MR | Zbl
[32] D. E. Christie, “Net homotopy for compacta”, Trans. Amer. Math. Soc., 56 (1944), 275–308 | DOI | MR | Zbl
[33] J. B. Quigley, “An exact sequence from the $n$th to the $(n-1)$st fundamental group”, Fund. Math., 77 (1973), 195–210 | MR | Zbl
[34] N. E. Steenrod, “Regular cycles of compact metric spaces”, Ann. of Math. (2), 41:4 (1940), 833–851 | DOI | MR | Zbl
[35] L. S. Pontrjagin, “Über den algebraischen Inhalt topologischer Dualitätssätze”, Math. Ann., 105:1 (1931), 165–205 ; L. S. Pontryagin, “Ob algebraicheskom soderzhanii topologicheskikh teorem dvoistvennosti”, Izbrannye nauchnye trudy, t. 1, Nauka, M., 1988, 65–105 | DOI | MR | Zbl | MR | Zbl
[36] D. Doitchinov, “Uniform shape and uniform Čech homology and cohomology groups for metric spaces”, Fund. Math., 102:3 (1979), 209–218 | MR | Zbl
[37] T. Miyata, “Homology, cohomology, and uniform shape”, Glas. Mat. Ser. III, 30:1 (1995), 85–109 | MR | Zbl
[38] V. Agaronjan, Yu. M. Smirnov, “The shape theory for uniform spaces and the shape uniform invariants”, Comment. Math. Univ. Carolin., 19:2 (1978), 351–357 | MR | Zbl
[39] E. Čech, “Théorie générale de l'homologie dans un espace quelconque”, Fund. Math., 19 (1932), 149–183 | Zbl
[40] S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloq. Publ., 27, Amer. Math. Soc., New York, 1942 | MR | Zbl
[41] S. Eilenberg, N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, NJ, 1952 | MR | Zbl
[42] Y. Kodama, “On embeddings of spaces into ANR and shapes”, J. Math. Soc. Japan, 27:4 (1975), 533–544 | DOI | MR | Zbl
[43] J. Krasinkiewicz, “On a method of constructing ANR-sets. An application of inverse limits”, Fund. Math., 92:2 (1976), 95–112 | MR | Zbl
[44] T. A. Chapman, L. C. Siebenmann, “Finding a boundary for a Hilbert cube manifold”, Acta Math., 137:3–4 (1976), 171–208 | DOI | MR | Zbl
[45] Y. Kodama, J. Ono, T. Watanabe, “AR associated with ANR-sequence and shape”, General Topology Appl., 9:2 (1978), 71–88 | DOI | MR | Zbl
[46] L. C. Siebenmann, “Chapman's classification of shapes: a proof using collapsing”, Manuscripta Math., 16:4 (1975), 373–384 | DOI | MR | Zbl
[47] R. C. Lacher, “Cell-like spaces”, Proc. Amer. Math. Soc., 20:2 (1969), 598–602 | DOI | MR | Zbl
[48] B. Günther, “Semigroup structures on derived limits”, J. Pure Appl. Algebra, 69:1 (1990), 51–65 | DOI | MR | Zbl
[49] R. Geoghegan, J. Krasinkiewicz, “Empty components in strong shape theory”, Topology Appl., 41:3 (1991), 213–233 | DOI | MR | Zbl
[50] J. B. Quigley, “Equivalence of fundamental and approaching groups of movable pointed compacta”, Fund. Math., 91 (1976), 73–83 | MR | Zbl
[51] J. W. Grossman, “Homotopy classes of maps between pro-spaces”, Michigan Math. J., 21:4 (1974), 355–362 | DOI | MR | Zbl
[52] T. Watanabe, “On a problem of Y. Kodama”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25:10 (1977), 981–985 | MR | Zbl
[53] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., 304, Springer-Verlag, Berlin–New York, 1972 | DOI | MR | Zbl
[54] K. Iriye, “The first derived functor of the inverse limit and localization”, J. Pure Appl. Algebra, 173:1 (2002), 7–14 | DOI | MR | Zbl
[55] B. I. Gray, “Spaces of the same $n$-type, for all $n$”, Topology, 5:3 (1966), 241–243 | DOI | MR | Zbl
[56] R. Geoghegan, “A note on the vanishing of $\mathrm{lim}^{1}$”, J. Pure Appl. Algebra, 17:1 (1980), 113–116 | DOI | MR | Zbl
[57] C. A. McGibbon, J. M. Møller, “On spaces with the same $n$-type for all $n$”, Topology, 31:1 (1992), 177–201 | DOI | MR | Zbl
[58] R. Geoghegan, Topological methods in group theory, Grad. Texts in Math., 243, Springer, New York, 2008 | DOI | MR | Zbl
[59] M. Artin, B. Mazur, Etale homotopy, Lecture Notes in Math., 100, Springer-Verlag, Berlin–New York, 1969 | DOI | MR | Zbl
[60] A. Koyama, “A Whitehead-type theorem in fine shape theory”, Glas. Mat. Ser. III, 18:2 (1983), 359–370 | MR | Zbl
[61] Yu. T. Lisitsa, “Hurewicz and Whitehead theorems in the strong shape theory”, Soviet Math. Dokl., 32:1 (1985), 36–39 | MR | Zbl
[62] J. Keesling, “Algebraic invariants in shape theory”, Topology Proceedings, Vol. 1 (Auburn, AL, 1976), Auburn Univ., Auburn, 1977, 115–124 | MR | Zbl
[63] L. C. Siebenmann, “Infinite simple homotopy types”, Indag. Math., 32 (1970), 479–495 | MR | Zbl
[64] D. A. Edwards, R. Geoghegan, “Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction”, Ann. Math. (2), 101 (1975), 521–535 | DOI | MR | Zbl
[65] D. A. Edwards, R. Geoghegan, “The stability problem in shape, and a Whitehead theorem in pro-homotopy”, Trans. Amer. Math. Soc., 214 (1975), 261–277 | DOI | MR | Zbl
[66] J. Dydak, “A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR's”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25:1 (1977), 55–62 | MR | Zbl
[67] J. Dydak, “The Whitehead and the Smale theorems in shape theory”, Dissertationes Math. (Rozprawy Mat.), 156 (1979), 55 p | MR | Zbl
[68] Y. Kodama, “A characteristic property of a finite-dimensional pointed FANR”, Japan J. Math. (N. S.), 4:2 (1978), 445–460 | MR | Zbl
[69] S. Ferry, A. Ranicki, “A survey of Wall's finiteness obstruction”, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., 149, Princeton Univ. Press, Princeton, NJ, 2001, 63–79 ; arXiv: math/0008070 | MR | Zbl
[70] J. Dydak, “Local $n$-connectivity of quotient spaces and one-point compactifications”, Shape theory and geometric topology (Dubrovnik, 1981), Lecture Notes in Math., 870, Springer, Berlin–New York, 1981, 48–72 | DOI | MR | Zbl
[71] J. Dydak, “Relations between homology and homotopy pro-groups of continua”, The Proceedings of the 1981 Topology Conference (Blacksburg, VA, 1981), Topology Proc., 6, no. 2, 1981, 267–278 | MR | Zbl
[72] S. Mardešić, T. B. Rushing, “Shape fibrations. I”, General Topology Appl., 9:3 (1978), 193–215 | DOI | MR | Zbl
[73] F. Cathey, “Shape fibrations and strong shape theory”, Topology Appl., 14:1 (1982), 13–30 | DOI | MR | Zbl
[74] S. Bogatyi, “The Vietoris theorem for shapes, inverse limits, and a certain problem of Ju. M. Smirnov”, Soviet Math. Dokl., 14 (1973), 1089–1094 | MR | Zbl
[75] K. Kuperberg, “Two Vietoris-type isomorphism theorems in Borsuk's theory of shape, concerning the Vietoris–Cech homology and Borsuk's fundamental groups”, Studies in topology (Charlotte, NC, 1974), Academic Press, New York, 1975, 285–314 | MR | Zbl
[76] S. Ferry, “Remarks on Steenrod homology”, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 148–166 ; http://www.maths.ed.ac.uk/\allowbreakãar/books/novikov2.pdf | MR | Zbl
[77] J. H. C. Whitehead, “A certain exact sequence”, Ann. of Math. (2), 52:1 (1950), 51–110 | DOI | MR | Zbl
[78] Y. Kodama, A. Koyama, “Hurewicz isomorphism theorem for Steenrod homology”, Proc. Amer. Math. Soc., 74:2 (1979), 363–367 | DOI | MR | Zbl
[79] Y. Kodama, “Generalization of movability and Hurewicz's isomorphism theorem for Steenrod homology”, Russian Math. Surveys, 34:6 (1979), 57–59 | DOI | MR | Zbl | Zbl
[80] K. Kuperberg, “A note on the Hurewicz isomorphism theorem in Borsuk's theory of shape”, Fund. Math., 90:2 (1976), 173–175 | MR | Zbl
[81] J. Dydak, “Concerning the abelization of the first shape group of pointed continua”, Bull. Acad. Polon. Sci. Sér. Sci. Math Astronom. Phys., 24 (1976), 615–620 | MR | Zbl
[82] S. A. Melikhov, “Isotopic and continuous realizability of maps in the metastable range”, Sb. Math., 195:7–8 (2004), 983–1016 | DOI | MR | Zbl
[83] R. M. Vogt, “On the dual of a lemma of Milnor”, Proceedings of the Advanced Study Institute on Algebraic Topology, Vol. III (1970), Various Publ. Ser., 13, Mat. Inst., Aarhus Univ., Aarhus, 1970, 632–648 | MR | Zbl
[84] K. Eda, K. Kawamura, “The singular homology of the Hawaiian earring”, J. London Math. Soc. (2), 62:1 (2000), 305–310 | DOI | MR | Zbl
[85] K. Eda, K. Kawamura, “Homotopy and homology groups of the $n$-dimensional Hawaiian earring”, Fund. Math., 165:1 (2000), 17–28 | MR | Zbl
[86] S. Zdravkovska, “An example in shape theory”, Proc. Amer. Math. Soc., 83:3 (1981), 594–596 | DOI | MR | Zbl
[87] W. Hurewicz, “Homologie, Homotopie und lokaler Zusammenhang”, Fund. Math., 25 (1935), 467–485 | Zbl
[88] K. Borsuk, “On the $n$-movability”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 20 (1972), 859–864 | MR | Zbl
[89] J. Dydak, J. Segal, “Local $n$-connectivity of decomposition spaces”, Topology Appl., 18:1 (1984), 43–58 | DOI | MR | Zbl
[90] S. Ferry, “Homotoping $\varepsilon$-maps to homeomorphisms”, Amer J. Math., 101:3 (1979), 567–582 | DOI | MR | Zbl
[91] D. J. Garity, J. P. Henderson, D. G. Wright, “Menger spaces and inverse limits”, Pacific J. Math., 131:2 (1988), 249–259 | MR | Zbl
[92] W. J. R. Mitchell, D. Repovš, E. V. Ščepin, “On 1-cycles and the finite dimensionality of homology 4-manifolds”, Topology, 31:3 (1992), 605–623 | DOI | MR | Zbl
[93] K. Eda, K. Kawamura, “The surjectivity of the canonical homomorphism from singular homology to Čech homology”, Proc. Amer. Math. Soc., 128:5 (2000), 1487–1495 | DOI | MR | Zbl
[94] O. Jussila, “On homology theories in locally connected spaces”, Ann. Acad. Sci. Fenn. Ser. A I, 340 (1964), 15 p. ; O. Jussila, “On homology theories in locally connected spaces. II”, Ann. Acad. Sci. Fenn. Ser. A I, 378 (1965), 8 p | MR | Zbl | MR | Zbl
[95] S. Mardešić, “Comparison of singular and Čech homology in locally connected spaces”, Michigan Math. J., 6 (1959), 151–166 | DOI | MR | Zbl
[96] S. Buoncristiano, C. P. Rourke, B. J. Sanderson, A geometric approach to homology theory, London Math. Soc. Lecture Note Ser., 18, Cambridge Univ. Press, Cambridge–New York–Melbourne, 1976 | MR | Zbl
[97] K. Eda, U. Karimov, D. Repovš, “On (co)homology locally connected spaces”, Topology Appl., 120:3 (2002), 397–401 | DOI | MR | Zbl
[98] J. Dydak, “Steenrod homology and local connectedness”, Proc. Amer. Math. Soc., 98:1 (1986), 153–157 | DOI | MR | Zbl
[99] D. R. McMillan, Jr., “One-dimensional shape properties and three-manifolds”, Studies in topology (Charlotte, NC, 1974), Academic Press, New York, 1975, 367–381 | MR | Zbl
[100] N. Shrikhande, “Homotopy properties of decomposition spaces”, Fund. Math., 116:2 (1983), 119–124 | MR | Zbl
[101] R. H. Fox, “Shape theory and covering spaces”, Topology Conference (Blacksburg, VA, 1973), Lecture Notes in Math., 375, Springer, Berlin, 1974, 71–90 | DOI | MR | Zbl
[102] T. T. Moore, “On Fox's theory of overlays”, Fund. Math., 99:3 (1978), 205–211 | MR | Zbl
[103] S. Mardešić, V. Matijević, “Classifying overlay structures of topological spaces”, Topology Appl., 113:1–3 (2001), 167–209 | DOI | MR | Zbl
[104] M. F. Atiyah, G. B. Segal, “Equivariant $K$-theory and its completion”, J. Differential Geometry, 3 (1969), 1–18 | MR | Zbl
[105] L. J. Hernández-Paricio, “Fundamental pro-groupoids and covering projections”, Fund. Math., 156:1 (1998), 1–31 | MR | Zbl
[106] N. Brodskiy, J. Dydak, B. Labuz, A. Mitra, Rips complexes and covers in the uniform category, arXiv: abs/0706.3937
[107] J. Vilímovský, “Uniform quotients of metrizable spaces”, Fund. Math., 127:1 (1987), 51–55 | MR | Zbl
[108] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | MR | Zbl
[109] V. Runde, A taste of topology, Universitext, Springer, New York, 2005 | DOI | MR | Zbl
[110] B. LaBuz, Inverse limits of uniform covering maps, arXiv: abs/0808.4119
[111] V. M. Bukhshtaber, A. V. Shokurov, “The Landweber–Novikov algebra and formal vector fields on the line”, Funct. Anal. Appl., 12:3 (1978), 159–168 | DOI | MR | Zbl
[112] V. M. Bukhshtaber, “Groups of polynomial transformations of a line, non-formal symplectic manifolds, and the Landweber–Novikov algebra”, Russian Math. Surveys, 54:4 (1999), 837–838 | DOI | MR | Zbl
[113] I. K. Babenko, S. A. Bogatyi, “On the group of substitutions of formal power series with integer coefficients”, Izv. Math., 72:2 (2008), 241–264 | DOI | MR | Zbl
[114] D. L. Johnson, “The group of formal power series under substitution”, J. Austral. Math. Soc. Ser. A, 45:3 (1988), 296–302 | DOI | MR | Zbl
[115] J. Krasinkiewicz, “Continuous images of continua and $1$-movability”, Fund. Math., 98:2 (1978), 141–164 | MR | Zbl
[116] J. Krasinkiewicz, “On pointed $1$-movability and related notions”, Fund. Math., 114:1 (1981), 29–52 | MR | Zbl
[117] J. Krasinkiewicz, P. Minc, “Generalized paths and pointed 1-movability”, Fund. Math., 104:2 (1979), 141–153 | MR | Zbl