Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 3, pp. 399-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.
@article{RM_2009_64_3_a0,
     author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev},
     title = {Large-time asymptotic behaviour of solutions of non-linear {Sobolev-type} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {399--468},
     year = {2009},
     volume = {64},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_3_a0/}
}
TY  - JOUR
AU  - E. I. Kaikina
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 399
EP  - 468
VL  - 64
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_3_a0/
LA  - en
ID  - RM_2009_64_3_a0
ER  - 
%0 Journal Article
%A E. I. Kaikina
%A P. I. Naumkin
%A I. A. Shishmarev
%T Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 399-468
%V 64
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2009_64_3_a0/
%G en
%F RM_2009_64_3_a0
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 3, pp. 399-468. http://geodesic.mathdoc.fr/item/RM_2009_64_3_a0/

[1] S. L. Sobolev, “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[2] R. A. Aleksandryan, “Spektralnye svoistva operatorov, porozhdennykh sistemoi differentsialnykh uravnenii tipa S. L. Soboleva”, Tr. MMO, 9 (1980), 455–505

[3] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998 | Zbl

[4] S. Yu. Dobrokhotov, “Nonlocal analogues of the nonlinear Boussinesq equation for surface waves over an uneven bottom and their asymptotic solutions”, Soviet Phys. Dokl., 32:1 (1987), 18–20 | MR | Zbl

[5] T. I. Zelenyak, Izbrannye voprosy kachestvennoi teorii uravnenii s chastnymi proizvodnymi, Spetskurs dlya studentov-matematikov NGU, Izd-vo NGU, Novosibirsk, 1970

[6] B. V. Kapitonov, “Potential theory for the equation of small oscillations of a rotating fluid”, Math. USSR-Sb., 37:4 (1980), 559–579 | DOI | MR | Zbl | Zbl

[7] V. N. Maslennikova, “Explicit representations and a priori estimates for the solutions of boundary problems for Sobolev systems”, Siberian Math. J., 9:5 (1968), 883–897 | DOI | MR | Zbl | Zbl

[8] V. P. Maslov, “On the existence of a solution, decreasing as $t\to\infty$, of Sobolev's equation for small oscillations of a rotating fluid in a cylindrical domain”, Siberian Math. J., 9:6 (1968), 1013–1020 | DOI | MR | Zbl

[9] L. V. Ovsyannikov, N. I. Makarenko, V. N. Nalimov, V. Yu. Lyapidevskii, P. I. Plotnikov, I. V. Shturova, V. I. Bukreev, V. A. Vladimirov, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1985 | MR | Zbl

[10] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[11] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, PMM, 24:5 (1960), 852–864 | Zbl

[12] S. A. Gabov, A. G. Sveshnikov, Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR | Zbl

[13] S. Ja. Sekerž-Zen'kovič, “Fundamental solution of the interior wave operator”, Soviet Phys. Dokl., 24:5 (1979), 347–349 | MR | Zbl

[14] M. O. Korpusov, A. G. Sveshnikov, “Razrushenie reshenii abstraktnykh zadach Koshi dlya nelineinykh differentsialno-operatornykh uravnenii”, Dokl. RAN, 401:1 (2005), 12–15 | MR

[15] J. Albert, “On the decay of solutions of the generalized Benjamin–Bona–Mahony equation”, J. Math. Anal. Appl., 141:2 (1989), 527–537 | DOI | MR | Zbl

[16] J. W. Bebernes, A. A. Lacey, “Global existence and finite-time blow-up for a class of nonlocal parabolic problems”, Adv. Differential Equations, 2:6 (1997), 927–953 | MR | Zbl

[17] T. B. Benjamin, J. L. Bona, J. J. Mahony, “Model equations for long waves in nonlinear dispersive systems”, Philos. Trans. Roy. Soc. London Ser. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl

[18] P. Biler, “Long time behavior of the generalized Benjamin–Bona–Mahony equation in two space dimensions”, Differential Integral Equations, 5:4 (1992), 891–901 | MR | Zbl

[19] Y. M. Chen, “Remark on the global existence for the generalized Benjamin–Bona–Mahony equations in arbitrary dimension”, Appl. Anal., 30:1–3 (1988), 1–15 | DOI | MR | Zbl

[20] T. Hagen, J. Turi, “On a class of nonlinear BBM-like equations”, Comput. Appl. Math., 17:2 (1998), 161–172 | MR | Zbl

[21] G. Karch, “Large-time behavior of solutions to non-linear wave equations: higher-order asymptotics”, Math. Methods Appl. Sci., 22:18 (1999), 1671–1697 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] L. Liu, M. Mei, “A better asymptotic profile of Rosenau–Burgers equation”, Appl. Math. Comput., 131:1 (2002), 147–170 | DOI | MR | Zbl

[23] Ya. Liu, W. Wan, Sh. Lü, “Nonlinear pseudoparabolic equations in arbitrary dimensions”, Acta Math. Appl. Sinica (English Ser.), 13:3 (1997), 265–278 | DOI | MR | Zbl

[24] L. A. Medeiros, M. G. Perla, “On global solutions of a nonlinear dispersive equation of Sobolev type”, Bul. Soc. Bras. Math., 9:1 (1978), 49–59 | DOI | MR | Zbl

[25] M. Mei, “Long-time behavior of solution for Rosenau–Burgers equation. II”, Appl. Anal., 68:3–4 (1998), 333–356 | DOI | MR | Zbl

[26] P. I. Naumkin, “Large-time asymptotic behaviour of a step for the Benjamin–Bona–Mahony–Burgers equation”, Proc. Roy. Soc. Edinburgh Sect. A, 126:1 (1996), 1–18 | MR | Zbl

[27] M. A. Park, “On the Rosenau equation in multidimensional space”, Nonlinear Anal., 21:1 (1993), 77–85 | DOI | MR | Zbl

[28] J. M. Pereira, “Stability of multidimensional traveling waves for a Benjamin–Bona–Mahony type equation”, Differential Integral Equations, 9:4 (1996), 849–863 | MR | Zbl

[29] L. Zhang, “Decay of solutions of generalized Benjamin–Bona–Mahony equations”, Acta Math. Sinica (N.S.), 10:4 (1994), 428–438 | DOI | MR | Zbl

[30] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbucher und Monographien, II, Mathematische Monographien, 38, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl

[31] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Monogr. Textbooks Pure Appl. Math., 256, Dekker, New York, 2003 | MR | MR | Zbl | Zbl

[32] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR | Zbl

[33] G. A. Sviridyuk, V. E. Fedorov, “Analytic semigroups with kernels and linear equations of Sobolev type”, Siberian Math. J., 36:5 (1995), 973–987 | DOI | MR | Zbl

[34] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, Dekker, New York, 1999 | MR | Zbl

[35] U. Stefanelli, “On a class of doubly nonlinear nonlocal evolution equations”, Differential Integral Equations, 15:8 (2002), 897–922 | MR | Zbl

[36] A. L. Gladkov, “Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations”, Math. Notes, 60:3 (1996), 264–268 | DOI | MR | Zbl

[37] A. I. Kozhanov, “Initial boundary value problem for generalized Boussinesq type equations with nonlinear source”, Math. Notes, 65:1 (1999), 59–63 | DOI | MR | Zbl

[38] S. I. Lyashko, Generalized optimal control of linear systems with distributed parameters, Appl. Optimization, 69, Kluwer, Dordrecht, 2002 | MR | Zbl

[39] D. A. Nomirovskii, “On homeomorphisms realized by certain partial differential operators”, Ukrainian Math. J., 56:12 (2005), 2017–2027 | DOI | MR | Zbl

[40] S. G. Pyatkov, “Kraevye zadachi dlya nekotorykh uravnenii i sistem, voznikayuschikh v teorii elektricheskikh tsepei”, Aktualnye problemy sovremennoi matematiki, 1, Izd-vo NII MIOO NGU, Novosibirsk, 1995, 121–133 | Zbl

[41] C. Guowang, W. Shubin, “Existence and non-existence of global solutions for nonlinear hyperbolic equations of higher order”, Comment. Math. Univ. Carolin., 36:3 (1995), 475–487 | MR | Zbl

[42] H. Begehr, D. Q. Dai, “Initial boundary value problem for nonlinear pseudoparabolic equations”, Complex Variables Theory Appl., 18:1–2 (1992), 33–47 | DOI | MR | Zbl

[43] E. Di Benedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993 | MR | Zbl

[44] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Math. Surveys Monogr., 49, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[45] H. Fujita, “On the blowing up of solutions to the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124 | MR | Zbl

[46] I. E. Egorov, “Solvability of a boundary value problem for a high-order equation of mixed type”, Differ. Equ., 23:9 (1987), 1075–1081 | MR | Zbl

[47] I. E. Egorov, V. E. Fedorov, Neklassicheskie uravneniya matematicheskoi fiziki vysokogo poryadka, Izd-vo VTs SO RAN, Novosibirsk, 1995 | MR

[48] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl | Zbl

[49] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl

[50] H. Amann, M. Fila, “A Fujita-type theorem for the Laplace equation with a dynamical boundary condition”, Acta Math. Univ. Comenian. (N.S.), 66:2 (1997), 321–328 | MR | Zbl

[51] S. Kaplan, “On the growth of solutions of quasi-linear parabolic equations”, Comm. Pure Appl. Math., 16:3 (1963), 305–330 | DOI | MR | Zbl

[52] H. A. Levine, “Some nonexistence and instability theorems for solutions of the formally parabolic equations of the form $Pu_{t}=-Au+F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[53] M. O. Korpusov, A. G. Sveshnikov, “Blow-up of solutions of a class of strongly non-linear dissipative wave equations of Sobolev type with sources”, Izv. Math., 69:4 (2005), 733–770 | DOI | MR | Zbl

[54] A. M. Ilin, “O povedenii resheniya zadachi Koshi dlya parabolicheskogo uravneniya pri neogranichennom vozrastanii vremeni”, UMN, 16:2 (1961), 115–121 | MR | Zbl

[55] C. J. Amick, J. L. Bona, M. E. Schonbek, “Decay of solutions of some nonlinear wave equations”, J. Differential Equations, 81:1 (1989), 1–49 | DOI | MR | Zbl

[56] V. Bisognin, “On the asymptotic behavior of the solutions of a nonlinear dispersive system of Benjamin–Bona–Mahony's type”, Boll. Un. Mat. Ital. B (7), 10:1 (1996), 99–128 | MR | Zbl

[57] J. L. Bona, L. Luo, “Decay of solutions to nonlinear dispersive wave equations”, Differential Integral Equations, 6:5 (1993), 961–980 | MR | Zbl

[58] J. L. Bona, L. Luo, “More results on the decay of solutions to nonlinear, dispersive wave equations”, Discrete Contin. Dynam. Systems, 1:2 (1995), 151–193 | DOI | MR | Zbl

[59] D. B. Dix, “The dissipation of nonlinear dispersive waves: the case of asymptotically weak nonlinearity”, Comm. Partial Differential Equations, 17:9–10 (1992), 1665–1693 | DOI | MR | Zbl

[60] G. Karch, “Asymptotic behaviour of solutions to some pseudoparabolic equations”, Math. Methods Appl. Sci., 20:3 (1997), 271–289 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[61] M. Mei, “$L_q$-decay rates of solutions for Benjamin–Bona–Mahony–Burgers equations”, J. Differential Equations, 158:2 (1999), 314–340 | DOI | MR | Zbl

[62] M. Mei, C. Schmeiser, “Asymptotic profiles of solutions for the BBM–Burgers equations”, Funkcial. Ekvac., 44:1 (2001), 151–170 | MR | Zbl

[63] R. Prado, E. Zuazua, “Asymptotic expansion for the generalized Benjamin–Bona–Mahony–Burgers equation”, Differential Integral Equations, 15:12 (2002), 1409–1434 | MR | Zbl

[64] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “The Cauchy problem for an equation of Sobolev type with power non-linearity”, Izv. Math., 69:1 (2005), 59–111 | DOI | MR | Zbl

[65] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “Asymptotics for a Sobolev type equation with a critical nonlinearity”, Differ. Equ., 43:5 (2007), 673–687 | DOI | MR | Zbl

[66] I. A. Shishmarev, “On a nonlinear Sobolev type equation”, Differ. Equ., 41:1 (2005), 146–149 | DOI | MR | Zbl

[67] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for dissipative nonlinear equations, Lecture Notes in Math., 1884, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[68] S. Kamin, L. A. Peletier, “Large time behaviour of solutions of the heat equation with absorption”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12:3 (1985), 393–408 | MR | Zbl

[69] V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, “On asymptotic ‘eigenfunctions’ of the Cauchy problem for a nonlinear parabolic equation”, Math. USSR-Sb., 54:2 (1986), 421–455 | DOI | MR | Zbl

[70] M. Escobedo, O. Kavian, “Asymptotic behavior of positive solutions of a non-linear heat equation”, Houston J. Math., 14:1 (1988), 39–50 | MR | Zbl

[71] M. Escobedo, O. Kavian, H. Matano, “Large time behavior of solutions of a dissipative semilinear heat equation”, Comm. Partial Differential Equations, 20:7–8 (1994), 1427–1452 | DOI | MR | Zbl

[72] A. Gmira, L. Veron, “Large time behavior of solutions of a semilinear parabolic equation in $R^{N}$”, J. Differential Equations, 53:2 (1984), 258–276 | DOI | MR | Zbl

[73] O. Kavian, “Remarks on the large time behavior of a nonlinear diffusion equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4:5 (1987), 423–452 | MR | Zbl

[74] E. Zuazua, “A dynamical system approach to the self-similar large time behavior in scalar convection-diffusion equation”, J. Differential Equations, 108:1 (1994), 1–35 | DOI | MR | Zbl

[75] E. Zuazua, “Some recent results on the large time behavior for scalar parabolic conservation laws”, Elliptic and parabolic problems (Pont-à-Mousson, 1994), Pitman Res. Notes Math. Ser., 325, Longman Sci. Tech., Harlow, 1995, 251–263 | MR | Zbl

[76] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Vol. I, Winston, Washington, DC; Wiley, New York–Toronto–London, 1978 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Vol. II, Winston, Washington, DC; Wiley, New York–Toronto–London, 1979 | MR | Zbl | MR | Zbl | MR | Zbl

[77] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl | Zbl

[78] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937 | Zbl

[79] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge; Macmillan Company, New York, 1944 | MR | Zbl

[80] A. I. Kozhanov, “Parabolic equations with nonlocal nonlinear source”, Siberian Math. J., 35:5 (1994), 945–956 | DOI | MR | Zbl

[81] M. O. Korpusov, A. G. Sveshnikov, “Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics”, Comput. Math. Math. Phys., 43:12 (2003), 1765–1797 | MR | Zbl

[82] M. E. Schonbek, “The Fourier splitting method”, Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), Int. Press, Cambridge, MA, 1995, 269–274 | MR | Zbl

[83] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Large time behavior of solutions to dissipative nonlinear Schrödinger equation”, Proc. Roy. Soc. Edinburgh Sect. A, 130:5 (2000), 1029–1043 | DOI | MR | Zbl

[84] A. Matsumura, K. Nishihara, “Asymptotics toward the rarefaction wave of the solutions of Burgers' equation with nonlinear degenerate viscosity”, Nonlinear Anal., 23:5 (1994), 605–614 | DOI | MR | Zbl