@article{RM_2009_64_3_a0,
author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev},
title = {Large-time asymptotic behaviour of solutions of non-linear {Sobolev-type} equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {399--468},
year = {2009},
volume = {64},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_3_a0/}
}
TY - JOUR AU - E. I. Kaikina AU - P. I. Naumkin AU - I. A. Shishmarev TI - Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 399 EP - 468 VL - 64 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2009_64_3_a0/ LA - en ID - RM_2009_64_3_a0 ER -
%0 Journal Article %A E. I. Kaikina %A P. I. Naumkin %A I. A. Shishmarev %T Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2009 %P 399-468 %V 64 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2009_64_3_a0/ %G en %F RM_2009_64_3_a0
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 3, pp. 399-468. http://geodesic.mathdoc.fr/item/RM_2009_64_3_a0/
[1] S. L. Sobolev, “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl
[2] R. A. Aleksandryan, “Spektralnye svoistva operatorov, porozhdennykh sistemoi differentsialnykh uravnenii tipa S. L. Soboleva”, Tr. MMO, 9 (1980), 455–505
[3] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998 | Zbl
[4] S. Yu. Dobrokhotov, “Nonlocal analogues of the nonlinear Boussinesq equation for surface waves over an uneven bottom and their asymptotic solutions”, Soviet Phys. Dokl., 32:1 (1987), 18–20 | MR | Zbl
[5] T. I. Zelenyak, Izbrannye voprosy kachestvennoi teorii uravnenii s chastnymi proizvodnymi, Spetskurs dlya studentov-matematikov NGU, Izd-vo NGU, Novosibirsk, 1970
[6] B. V. Kapitonov, “Potential theory for the equation of small oscillations of a rotating fluid”, Math. USSR-Sb., 37:4 (1980), 559–579 | DOI | MR | Zbl | Zbl
[7] V. N. Maslennikova, “Explicit representations and a priori estimates for the solutions of boundary problems for Sobolev systems”, Siberian Math. J., 9:5 (1968), 883–897 | DOI | MR | Zbl | Zbl
[8] V. P. Maslov, “On the existence of a solution, decreasing as $t\to\infty$, of Sobolev's equation for small oscillations of a rotating fluid in a cylindrical domain”, Siberian Math. J., 9:6 (1968), 1013–1020 | DOI | MR | Zbl
[9] L. V. Ovsyannikov, N. I. Makarenko, V. N. Nalimov, V. Yu. Lyapidevskii, P. I. Plotnikov, I. V. Shturova, V. I. Bukreev, V. A. Vladimirov, Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Novosibirsk, 1985 | MR | Zbl
[10] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[11] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, PMM, 24:5 (1960), 852–864 | Zbl
[12] S. A. Gabov, A. G. Sveshnikov, Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR | Zbl
[13] S. Ja. Sekerž-Zen'kovič, “Fundamental solution of the interior wave operator”, Soviet Phys. Dokl., 24:5 (1979), 347–349 | MR | Zbl
[14] M. O. Korpusov, A. G. Sveshnikov, “Razrushenie reshenii abstraktnykh zadach Koshi dlya nelineinykh differentsialno-operatornykh uravnenii”, Dokl. RAN, 401:1 (2005), 12–15 | MR
[15] J. Albert, “On the decay of solutions of the generalized Benjamin–Bona–Mahony equation”, J. Math. Anal. Appl., 141:2 (1989), 527–537 | DOI | MR | Zbl
[16] J. W. Bebernes, A. A. Lacey, “Global existence and finite-time blow-up for a class of nonlocal parabolic problems”, Adv. Differential Equations, 2:6 (1997), 927–953 | MR | Zbl
[17] T. B. Benjamin, J. L. Bona, J. J. Mahony, “Model equations for long waves in nonlinear dispersive systems”, Philos. Trans. Roy. Soc. London Ser. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl
[18] P. Biler, “Long time behavior of the generalized Benjamin–Bona–Mahony equation in two space dimensions”, Differential Integral Equations, 5:4 (1992), 891–901 | MR | Zbl
[19] Y. M. Chen, “Remark on the global existence for the generalized Benjamin–Bona–Mahony equations in arbitrary dimension”, Appl. Anal., 30:1–3 (1988), 1–15 | DOI | MR | Zbl
[20] T. Hagen, J. Turi, “On a class of nonlinear BBM-like equations”, Comput. Appl. Math., 17:2 (1998), 161–172 | MR | Zbl
[21] G. Karch, “Large-time behavior of solutions to non-linear wave equations: higher-order asymptotics”, Math. Methods Appl. Sci., 22:18 (1999), 1671–1697 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[22] L. Liu, M. Mei, “A better asymptotic profile of Rosenau–Burgers equation”, Appl. Math. Comput., 131:1 (2002), 147–170 | DOI | MR | Zbl
[23] Ya. Liu, W. Wan, Sh. Lü, “Nonlinear pseudoparabolic equations in arbitrary dimensions”, Acta Math. Appl. Sinica (English Ser.), 13:3 (1997), 265–278 | DOI | MR | Zbl
[24] L. A. Medeiros, M. G. Perla, “On global solutions of a nonlinear dispersive equation of Sobolev type”, Bul. Soc. Bras. Math., 9:1 (1978), 49–59 | DOI | MR | Zbl
[25] M. Mei, “Long-time behavior of solution for Rosenau–Burgers equation. II”, Appl. Anal., 68:3–4 (1998), 333–356 | DOI | MR | Zbl
[26] P. I. Naumkin, “Large-time asymptotic behaviour of a step for the Benjamin–Bona–Mahony–Burgers equation”, Proc. Roy. Soc. Edinburgh Sect. A, 126:1 (1996), 1–18 | MR | Zbl
[27] M. A. Park, “On the Rosenau equation in multidimensional space”, Nonlinear Anal., 21:1 (1993), 77–85 | DOI | MR | Zbl
[28] J. M. Pereira, “Stability of multidimensional traveling waves for a Benjamin–Bona–Mahony type equation”, Differential Integral Equations, 9:4 (1996), 849–863 | MR | Zbl
[29] L. Zhang, “Decay of solutions of generalized Benjamin–Bona–Mahony equations”, Acta Math. Sinica (N.S.), 10:4 (1994), 428–438 | DOI | MR | Zbl
[30] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbucher und Monographien, II, Mathematische Monographien, 38, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl
[31] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest-order derivative, Monogr. Textbooks Pure Appl. Math., 256, Dekker, New York, 2003 | MR | MR | Zbl | Zbl
[32] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Neklassicheskie differentsialno-operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR | Zbl
[33] G. A. Sviridyuk, V. E. Fedorov, “Analytic semigroups with kernels and linear equations of Sobolev type”, Siberian Math. J., 36:5 (1995), 973–987 | DOI | MR | Zbl
[34] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, Dekker, New York, 1999 | MR | Zbl
[35] U. Stefanelli, “On a class of doubly nonlinear nonlocal evolution equations”, Differential Integral Equations, 15:8 (2002), 897–922 | MR | Zbl
[36] A. L. Gladkov, “Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations”, Math. Notes, 60:3 (1996), 264–268 | DOI | MR | Zbl
[37] A. I. Kozhanov, “Initial boundary value problem for generalized Boussinesq type equations with nonlinear source”, Math. Notes, 65:1 (1999), 59–63 | DOI | MR | Zbl
[38] S. I. Lyashko, Generalized optimal control of linear systems with distributed parameters, Appl. Optimization, 69, Kluwer, Dordrecht, 2002 | MR | Zbl
[39] D. A. Nomirovskii, “On homeomorphisms realized by certain partial differential operators”, Ukrainian Math. J., 56:12 (2005), 2017–2027 | DOI | MR | Zbl
[40] S. G. Pyatkov, “Kraevye zadachi dlya nekotorykh uravnenii i sistem, voznikayuschikh v teorii elektricheskikh tsepei”, Aktualnye problemy sovremennoi matematiki, 1, Izd-vo NII MIOO NGU, Novosibirsk, 1995, 121–133 | Zbl
[41] C. Guowang, W. Shubin, “Existence and non-existence of global solutions for nonlinear hyperbolic equations of higher order”, Comment. Math. Univ. Carolin., 36:3 (1995), 475–487 | MR | Zbl
[42] H. Begehr, D. Q. Dai, “Initial boundary value problem for nonlinear pseudoparabolic equations”, Complex Variables Theory Appl., 18:1–2 (1992), 33–47 | DOI | MR | Zbl
[43] E. Di Benedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993 | MR | Zbl
[44] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Math. Surveys Monogr., 49, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[45] H. Fujita, “On the blowing up of solutions to the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124 | MR | Zbl
[46] I. E. Egorov, “Solvability of a boundary value problem for a high-order equation of mixed type”, Differ. Equ., 23:9 (1987), 1075–1081 | MR | Zbl
[47] I. E. Egorov, V. E. Fedorov, Neklassicheskie uravneniya matematicheskoi fiziki vysokogo poryadka, Izd-vo VTs SO RAN, Novosibirsk, 1995 | MR
[48] E. Mitidieri, S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl | Zbl
[49] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter Exp. Math., 19, de Gruyter, Berlin, 1995 | MR | MR | Zbl | Zbl
[50] H. Amann, M. Fila, “A Fujita-type theorem for the Laplace equation with a dynamical boundary condition”, Acta Math. Univ. Comenian. (N.S.), 66:2 (1997), 321–328 | MR | Zbl
[51] S. Kaplan, “On the growth of solutions of quasi-linear parabolic equations”, Comm. Pure Appl. Math., 16:3 (1963), 305–330 | DOI | MR | Zbl
[52] H. A. Levine, “Some nonexistence and instability theorems for solutions of the formally parabolic equations of the form $Pu_{t}=-Au+F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl
[53] M. O. Korpusov, A. G. Sveshnikov, “Blow-up of solutions of a class of strongly non-linear dissipative wave equations of Sobolev type with sources”, Izv. Math., 69:4 (2005), 733–770 | DOI | MR | Zbl
[54] A. M. Ilin, “O povedenii resheniya zadachi Koshi dlya parabolicheskogo uravneniya pri neogranichennom vozrastanii vremeni”, UMN, 16:2 (1961), 115–121 | MR | Zbl
[55] C. J. Amick, J. L. Bona, M. E. Schonbek, “Decay of solutions of some nonlinear wave equations”, J. Differential Equations, 81:1 (1989), 1–49 | DOI | MR | Zbl
[56] V. Bisognin, “On the asymptotic behavior of the solutions of a nonlinear dispersive system of Benjamin–Bona–Mahony's type”, Boll. Un. Mat. Ital. B (7), 10:1 (1996), 99–128 | MR | Zbl
[57] J. L. Bona, L. Luo, “Decay of solutions to nonlinear dispersive wave equations”, Differential Integral Equations, 6:5 (1993), 961–980 | MR | Zbl
[58] J. L. Bona, L. Luo, “More results on the decay of solutions to nonlinear, dispersive wave equations”, Discrete Contin. Dynam. Systems, 1:2 (1995), 151–193 | DOI | MR | Zbl
[59] D. B. Dix, “The dissipation of nonlinear dispersive waves: the case of asymptotically weak nonlinearity”, Comm. Partial Differential Equations, 17:9–10 (1992), 1665–1693 | DOI | MR | Zbl
[60] G. Karch, “Asymptotic behaviour of solutions to some pseudoparabolic equations”, Math. Methods Appl. Sci., 20:3 (1997), 271–289 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[61] M. Mei, “$L_q$-decay rates of solutions for Benjamin–Bona–Mahony–Burgers equations”, J. Differential Equations, 158:2 (1999), 314–340 | DOI | MR | Zbl
[62] M. Mei, C. Schmeiser, “Asymptotic profiles of solutions for the BBM–Burgers equations”, Funkcial. Ekvac., 44:1 (2001), 151–170 | MR | Zbl
[63] R. Prado, E. Zuazua, “Asymptotic expansion for the generalized Benjamin–Bona–Mahony–Burgers equation”, Differential Integral Equations, 15:12 (2002), 1409–1434 | MR | Zbl
[64] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “The Cauchy problem for an equation of Sobolev type with power non-linearity”, Izv. Math., 69:1 (2005), 59–111 | DOI | MR | Zbl
[65] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, “Asymptotics for a Sobolev type equation with a critical nonlinearity”, Differ. Equ., 43:5 (2007), 673–687 | DOI | MR | Zbl
[66] I. A. Shishmarev, “On a nonlinear Sobolev type equation”, Differ. Equ., 41:1 (2005), 146–149 | DOI | MR | Zbl
[67] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for dissipative nonlinear equations, Lecture Notes in Math., 1884, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[68] S. Kamin, L. A. Peletier, “Large time behaviour of solutions of the heat equation with absorption”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12:3 (1985), 393–408 | MR | Zbl
[69] V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, “On asymptotic ‘eigenfunctions’ of the Cauchy problem for a nonlinear parabolic equation”, Math. USSR-Sb., 54:2 (1986), 421–455 | DOI | MR | Zbl
[70] M. Escobedo, O. Kavian, “Asymptotic behavior of positive solutions of a non-linear heat equation”, Houston J. Math., 14:1 (1988), 39–50 | MR | Zbl
[71] M. Escobedo, O. Kavian, H. Matano, “Large time behavior of solutions of a dissipative semilinear heat equation”, Comm. Partial Differential Equations, 20:7–8 (1994), 1427–1452 | DOI | MR | Zbl
[72] A. Gmira, L. Veron, “Large time behavior of solutions of a semilinear parabolic equation in $R^{N}$”, J. Differential Equations, 53:2 (1984), 258–276 | DOI | MR | Zbl
[73] O. Kavian, “Remarks on the large time behavior of a nonlinear diffusion equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4:5 (1987), 423–452 | MR | Zbl
[74] E. Zuazua, “A dynamical system approach to the self-similar large time behavior in scalar convection-diffusion equation”, J. Differential Equations, 108:1 (1994), 1–35 | DOI | MR | Zbl
[75] E. Zuazua, “Some recent results on the large time behavior for scalar parabolic conservation laws”, Elliptic and parabolic problems (Pont-à-Mousson, 1994), Pitman Res. Notes Math. Ser., 325, Longman Sci. Tech., Harlow, 1995, 251–263 | MR | Zbl
[76] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Vol. I, Winston, Washington, DC; Wiley, New York–Toronto–London, 1978 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Vol. II, Winston, Washington, DC; Wiley, New York–Toronto–London, 1979 | MR | Zbl | MR | Zbl | MR | Zbl
[77] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl | Zbl
[78] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937 | Zbl
[79] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge; Macmillan Company, New York, 1944 | MR | Zbl
[80] A. I. Kozhanov, “Parabolic equations with nonlocal nonlinear source”, Siberian Math. J., 35:5 (1994), 945–956 | DOI | MR | Zbl
[81] M. O. Korpusov, A. G. Sveshnikov, “Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics”, Comput. Math. Math. Phys., 43:12 (2003), 1765–1797 | MR | Zbl
[82] M. E. Schonbek, “The Fourier splitting method”, Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), Int. Press, Cambridge, MA, 1995, 269–274 | MR | Zbl
[83] N. Hayashi, E. I. Kaikina, P. I. Naumkin, “Large time behavior of solutions to dissipative nonlinear Schrödinger equation”, Proc. Roy. Soc. Edinburgh Sect. A, 130:5 (2000), 1029–1043 | DOI | MR | Zbl
[84] A. Matsumura, K. Nishihara, “Asymptotics toward the rarefaction wave of the solutions of Burgers' equation with nonlinear degenerate viscosity”, Nonlinear Anal., 23:5 (1994), 605–614 | DOI | MR | Zbl