@article{RM_2009_64_2_a4,
author = {D. A. Mihalin},
title = {Special {Chebyshev} and {Zolotarev} perfect splines on an interval},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {396--398},
year = {2009},
volume = {64},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_2_a4/}
}
D. A. Mihalin. Special Chebyshev and Zolotarev perfect splines on an interval. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 2, pp. 396-398. http://geodesic.mathdoc.fr/item/RM_2009_64_2_a4/
[1] V. M. Tikhomirov, Matem. sb., 80:2 (1969), 290–304 | MR | Zbl
[2] S. Karlin, Studies in spline functions and approximation theory, Academic Press, New York, 1976, 371–460 | MR | Zbl
[3] A. S. Cavaretta, J. Analyse Math., 28:1 (1975), 41–59 | DOI | Zbl
[4] K. Borsuk, Fundamenta, 20 (1933), 177–191 | Zbl
[5] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl
[6] V. B. Demidovich, Priblizhennye vychisleniya s pomoschyu obobschennykh polinomov iz chebyshevskikh prostranstv. Chebyshevskie obobschennye polinomy, Izd-vo Mosk. un-ta, M., 1990
[7] V. N. Malozemov, A. B. Pevnyi, Polinomialnye splainy, Izd-vo Len. un-ta, L., 1986 | MR | Zbl
[8] D. A. Mikhalin, Fundam. i prikl. matem., 8:4 (2002), 1047–1058 | MR | Zbl