Index theory and non-commutative geometry on foliated manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 2, pp. 273-391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper gives a survey of the index theory of tangentially elliptic and transversally elliptic operators on foliated manifolds as well as of related notions and results in non-commutative geometry.
@article{RM_2009_64_2_a2,
     author = {Yu. A. Kordyukov},
     title = {Index theory and non-commutative geometry on foliated manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {273--391},
     year = {2009},
     volume = {64},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_2_a2/}
}
TY  - JOUR
AU  - Yu. A. Kordyukov
TI  - Index theory and non-commutative geometry on foliated manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 273
EP  - 391
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_2_a2/
LA  - en
ID  - RM_2009_64_2_a2
ER  - 
%0 Journal Article
%A Yu. A. Kordyukov
%T Index theory and non-commutative geometry on foliated manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 273-391
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2009_64_2_a2/
%G en
%F RM_2009_64_2_a2
Yu. A. Kordyukov. Index theory and non-commutative geometry on foliated manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 2, pp. 273-391. http://geodesic.mathdoc.fr/item/RM_2009_64_2_a2/

[1] M. F. Atiyah, I. Singer, “The index of elliptic operators. I”, Ann. of Math. (2), 87:3 (1968), 484–530 | DOI | MR | MR | Zbl

[2] M. F. Atiyah, G. B. Segal, “The index of elliptic operators. II”, Ann. of Math. (2), 87:3 (1968), 531–545 | DOI | MR | MR | Zbl

[3] M. F. Atiyah, I. Singer, “The index of elliptic operators. III”, Ann. of Math. (2), 87:3 (1968), 546–604 | DOI | MR | MR | Zbl

[4] M. F. Atiyah, I. Singer, “The index of elliptic operators. IV”, Ann. of Math. (2), 93:1 (1971), 119–138 | DOI | MR | MR | Zbl | Zbl

[5] Yu. P. Solovyov, E. V. Troitsky, $C^*$-algebras and elliptic operators in differential topology, Transl. Math. Monogr., 192, Amer. Math. Soc., Providence, RI, 2001 | MR | MR | Zbl | Zbl

[6] N. Berline, E. Getzler, M. Vergne, Heat kernels and the Dirac operator, Grundlehren Math. Wiss., 298, Springer-Verlag, Berlin, 1992 | MR | Zbl

[7] P. B. Gilkey, Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Second edition, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[8] R. B. Melrose, The Atiyah–Patodi–Singer index theorem, Res. Notes in Math., 4, A K Peters, Wellesley, MA, 1993 | MR | Zbl

[9] R. S. Palais, Seminar on the Atiyah–Singer index theorem, Ann. of Math. Stud., 57, Princeton Univ. Press, Princeton, NJ, 1965 | MR | Zbl

[10] J. Roe, Elliptic operators, topology and asymptotic methods, Second edition, Pitman Res. Notes Math. Ser., 395, Longman, Harlow, 1998 | MR | Zbl

[11] M. F. Atiyah, “Elliptic operators and compact groups”, Lecture Notes in Math., 401, Springer-Verlag, Berlin–New York, 1974 | DOI | MR | Zbl

[12] I. M. Singer, “Recent applications of index theory for elliptic operators”, Partial differential equations (Berkeley, CA, 1971), Proc. Sympos. Pure Math., 23, Amer. Math. Soc., Providence, RI, 1973, 11–31 | MR | Zbl

[13] A. Connes, “A survey of foliations and operator algebras”, Operator algebras and applications, Part I (Kingston, ON, 1980), Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, RI, 1982, 521–628 | MR | Zbl

[14] A. Connes, “Noncommutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62 (1985), 257–360 | DOI | MR | Zbl

[15] A. Connes, “Sur la théorie non commutative de l'intégration”, Algèbres d'opérateurs (Les Plans-sur-Bex, 1978), Lecture Notes in Math., 725, Springer, Berlin, 1979, 19–143 | DOI | MR | Zbl

[16] A. Connes, “Noncommutative geometry – year 2000”, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., Special Volume, Part II, 2000, 481–559 | MR | Zbl

[17] A. Connes, “Cyclic cohomology, noncommutative geometry and quantum group symmetries”, Noncommutative geometry, Lecture Notes in Math., 1831, Springer, Berlin, 2004, 1–71 | DOI | MR | Zbl

[18] Yu. A. Kordyukov, “Noncommutative geometry of foliations”, J. K-Theory, 2:2 (2008), 219–327 | DOI | MR | Zbl

[19] A. Connes, Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[20] J. M. Gracia-Bondía, J. C. Várilly, H. Figueroa, Elements of noncommutative geometry, Birkhäuser Adv. Texts. Basler Lehrbücher, Birkhäuser, Boston, MA, 2001 | MR | Zbl

[21] G. Landi, An introduction to noncommutative spaces and their geometries, Lecture Notes in Phys. Monogr., 51, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[22] M. Khalkhali, M. Marcolli (eds.), An invitation to noncommutative geometry, International Workshop on Noncommutative Geometry (Tehran, 2005), World Sci. Publ., Hackensack, NJ, 2008 | MR | Zbl

[23] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic theory and noncommutative geometry. Nonlocal elliptic operators, Oper. Theory Adv. Appl., 183, Birkhäuser, Basel, 2008 | DOI | MR | Zbl

[24] J. C. Várilly, An introduction to noncommutative geometry, EMS Ser. Lect. Math., European Mathematical Society (EMS), Zürich, 2006 | MR | Zbl

[25] K. B. Sinha, D. Goswami, Quantum stochastic processes and noncommutative geometry, Cambridge Tracts in Math., 169, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[26] J.-M. Bismut, “The Atiyah–Singer index theorem for families of Dirac operators: Two heat equation proofs”, Invent. Math., 83:1 (1985), 91–151 | DOI | MR | Zbl

[27] H. B. Lawson, M.-L. Michelsohn,, Spin geometry, Princeton Math. Ser., 38, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[28] P. Baum, R. G. Douglas, “$K$ homology and index theory”, Operator algebras and applications, Part I (Kingston, ON, 1980), Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, RI, 1982, 117–173 | MR | Zbl

[29] E. Getzler, “The odd Chern character in cyclic homology and spectral flow”, Topology, 32:3 (1993), 489–507 | DOI | MR | Zbl

[30] H. P. McKean, Jr., I. M. Singer, “Curvature and the eigenvalues of the Laplacian”, J. Differential Geom., 1:1 (1967), 43–69 | MR | Zbl

[31] M. Atiyah, R. Bott, V. K. Patodi, “On the heat equation and the index theorem”, Invent. Math., 19:4 (1973), 279–330 | DOI | MR | Zbl

[32] P. B. Gilkey, “Curvature and the eigenvalues of the Laplacian for elliptic complexes”, Adv. Math., 10:3 (1973), 344–382 | DOI | MR | Zbl

[33] V. K. Patodi, “Curvature and the eigenforms of the Laplace operator”, J. Differential Geom., 5:1–2 (1971), 233–249 | MR | Zbl

[34] E. Getzler, “A short proof of the local Atiyah–Singer index theorem”, Topology, 25:1 (1986), 111–117 | DOI | MR | Zbl

[35] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[36] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79:1 (1976), 71–99 | DOI | MR | Zbl

[37] M. F. Atiyah, R. Bott, “A Lefschetz fixed point formula for elliptic complexes. I”, Ann. of Math. (2), 86:2 (1967), 374–407 | DOI | MR | Zbl

[38] M. F. Atiyah, R. Bott, “A Lefschetz fixed point formula for elliptic complexes. II. Applications”, Ann. of Math. (2), 88:3 (1968), 451–491 | DOI | MR | Zbl

[39] G. G. Kasparov, “The operator $K$-functor and extensions of $C^*$-algebras”, Math. USSR-Izv., 16:3 (1981), 513–572 | DOI | MR | Zbl

[40] N. Berline, M. Vergne, “A proof of Bismut local index theorem for a family of Dirac operators”, Topology, 26:4 (1987), 435–463 | DOI | MR | Zbl

[41] S. Ferry, A. Ranicki, J. Rosenberg, “A history and survey of the Novikov conjecture”, Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995, 7–66 | MR | Zbl

[42] M. Gromov, “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993), Progr. Math., 132, Birkhaüser Boston, Boston, MA, 1996, 1–213 | MR | Zbl

[43] G. Kasparov, “Novikov's conjecture on higher signatures: the operator $K$-theory approach”, Representation theory of groups and algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, 79–99 | MR | Zbl

[44] E. Leichtnam, P. Piazza, “Elliptic operators and higher signatures”, Ann. Inst. Fourier (Grenoble), 54:5 (2004), 1197–1277 ; arXiv: math/0406020 | MR | Zbl

[45] M. F. Atiyah, “Elliptic operators, discrete groups and von Neumann algebras”, Colloque “Analyse et Topologie” en l'honneur de Henri Cartan (Orsay, 1974), Astérisque, 32–33, Soc. Math. France, Paris, 1976, 43–72 | MR | Zbl

[46] A. Connes, H. Moscovici, “Cyclic cohomology, the Novikov conjecture and hyperbolic groups”, Topology, 29:3 (1990), 345–388 | DOI | MR | Zbl

[47] J. Lott, “Superconnections and higher index theory”, Geom. Funct. Anal., 2:4 (1992), 421–454 | DOI | MR | Zbl

[48] J. Lott, “Higher eta-invariants”, $K$-Theory, 6:3 (1992), 191–233 | DOI | MR | Zbl

[49] M. A. Rieffel, “Morita equivalence for operator algebras”, Operator algebras and applications, Part I (Kingston, ON, 1980), Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, RI, 1982, 285–298 | MR | Zbl

[50] M. F. Atiyah, “Global theory of elliptic operators”, Proceedings of the International Conference on Functional Analysis and Related Topics (Tokio, 1969), Univ. of Tokyo Press, Tokyo, 1970, 21–30 | MR | Zbl

[51] G. G. Kasparov, “Topological invariants of elliptic operators. I. $K$-homology”, Math. USSR-Izv., 9:4 (1975), 751–792 | DOI | MR | Zbl

[52] L. G. Brown, R. G. Douglas, P. A. Fillmore, “Extensions of $C^*$-algebras and $K$-homology”, Ann. of Math. (2), 105:2 (1977), 265–324 | DOI | MR | Zbl

[53] P. Baum, N. Higson, T. Schick, “On the equivalence of geometric and analytic $K$-homology”, Pure Appl. Math. Quart., 3:1 (2007), 1–24 ; arXiv: math/0701484 | MR | Zbl

[54] A. S. Mishchenko, A. T. Fomenko, “The index of elliptic operators over $C^*$-algebras”, Math. USSR-Izv., 15:1 (1980), 87–112 | DOI | MR | Zbl

[55] M. Breuer, “Fredholm theories in von Neumann algebras. I”, Math. Ann., 178:3 (1968), 243–254 | DOI | MR | Zbl

[56] M. Breuer, “Fredholm theories in von Neumann algebras. II”, Math. Ann., 180:4 (1969), 313–325 | DOI | MR | Zbl

[57] J. Phillips, I. Raeburn, “An index theorem for Toeplitz operators with noncommutative symbol space”, J. Funct. Anal., 120:2 (1994), 239–263 | DOI | MR | Zbl

[58] M. Karoubi, Homologie cyclique et $K$-théorie, Astérisque, 149, 1987 | MR | Zbl

[59] J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, Springer-Verlag, Berlin, 1998 | MR | Zbl

[60] L. B. Schweitzer, “A short proof that $M_n(A)$ is local if $A$ is local and Fréchet”, Internat. J. Math., 3:4 (1992), 581–589 ; arXiv: funct-an/9211005 | DOI | MR | Zbl

[61] A. Connes, “An analogue of the Thom isomorphism for crossed products of a $C^*$-algebra by an action of $\mathbb R$”, Adv. in Math., 39:1 (1981), 31–55 | DOI | MR | Zbl

[62] J.-B. Bost, “Principe d'Oka, $K$-théorie et systèmes dynamiques non commutatifs”, Invent. Math., 101:1 (1990), 261–333 | DOI | MR | Zbl

[63] A. Connes, H. Moscovici, “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5:2 (1995), 174–243 | DOI | MR | Zbl

[64] A. Connes, “Geometry from the spectral point of view”, Lett. Math. Phys., 34:3 (1995), 203–238 | DOI | MR | Zbl

[65] S. Baaj, P. Julg, “Théorie bivariante de Kasparov et opérateurs non bornés dans les $C^{\ast}$-modules hilbertiens”, C. R. Acad. Sci. Paris Sér. I Math., 296:21 (1983), 875–878 | MR | Zbl

[66] R. Ji, “Smooth dense subalgebras of reduced group $C^*$-algebras, Schwartz cohomology of groups, and cyclic cohomology”, J. Funct. Anal., 107:1 (1992), 1–33 | DOI | MR | Zbl

[67] A. Connes, On the spectral characterization of manifolds, , 2008 arXiv: abs/0810.2088

[68] J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A–B, 262 (1966), A1107–A1108 | MR | Zbl

[69] A. Connes, “The action functional in non-commutative geometry”, Comm. Math. Phys., 117:4 (1988), 673–683 | DOI | MR | Zbl

[70] M. Wodzicki, “Noncommutative residue. Chapter I. Fundamentals”, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 320–399 | DOI | MR | Zbl

[71] V. Guillemin, “A new proof of Weyl's formula on the asymptotic distribution of eigenvalues”, Adv. Math., 55:2 (1985), 131–160 | DOI | MR | Zbl

[72] A. L. Carey, F. A. Sukochev, “Dixmier traces and some applications in non-commutative geometry”, Russian Math. Surveys, 61:6 (2006), 1039–1099 | DOI | MR | Zbl

[73] A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, “The local index formula in semifinite von Neumann algebras. I: Spectral flow”, Adv. Math., 202:2 (2006), 451–516 | DOI | MR | Zbl

[74] A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, “The local index formula in semifinite von Neumann algebras. II: The even case”, Adv. Math., 202:2 (2006), 517–554 | DOI | MR | Zbl

[75] A. Connes, H. Moscovici, “Type III and spectral triples”, Traces in number theory, geometry and quantum fields, Aspects Math., E38, Vieweg, Wiesbaden, 2008, 57–71 | Zbl

[76] H. Moscovici, Local index formula and twisted spectral tripes, , 2009 arXiv: abs/0902.0835

[77] A. Haefliger, “Groupo\"ides d'holonomie et classifiants”, Transversal structure of foliations (Toulouse, 1982), Astérisque, 116, 1984, 70–97 | MR | Zbl

[78] A. Haefliger, “Some remarks on foliations with minimal leaves”, J. Differential Geom., 15:2 (1980), 269–384 | MR | Zbl

[79] R. Bott, “On topological obstructions to integrability”, Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthiers-Villars, Paris, 1971, 27–36 | MR | Zbl

[80] Y. Carrière, “Flots riemanniens”, Transversal structure of foliations (Toulouse, 1982), Astérisque, 116, 1984, 31–52 | MR | Zbl

[81] H. E. Winkelnkemper, “The graph of a foliation”, Ann. Global Anal. Geom., 1:3 (1983), 53–75 | DOI | MR | Zbl

[82] A. Haefliger, “Homotopy and integrability”, Manifolds – Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Math., 197, Springer, Berlin, 1971, 133–163 | DOI | MR | Zbl

[83] A. Haefliger, “Differential cohomology”, Differential topology (Varenna, 1976), Liguori, Naples, 1979, 19–70 | MR | Zbl

[84] J. Phillips, “The holonomic imperative and the homotopy groupoid of a foliated manifold”, Rocky Mountain J. Math., 17:1 (1987), 151–165 | MR | Zbl

[85] T. Fack, G. Skandalis, “Sur les représentations et idéaux de la $C^*$-algèbre d'un feuilletage”, J. Operator Theory, 8 (1982), 95–129 | MR | Zbl

[86] M. Hilsum, G. Skandalis, “Stabilité des $C^{\ast}$-algèbres de feuilletages”, Ann. Inst. Fourier (Grenoble), 33:3 (1983), 201–208 | MR | Zbl

[87] F. Kamber, Ph. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math., 493, Springer, Berlin–New York, 1975 | DOI | MR | Zbl

[88] A. Connes, G. Skandalis, “The longitudinal index theorem for foliations”, Publ. Res. Inst. Math. Sci., 20:6 (1984), 1139–1183 | DOI | MR | Zbl

[89] G. G. Kasparov, “$K$-theory, group $C^*$-algebras, and higher signatures (conspectus)”, Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995, 101–146 | MR | Zbl

[90] P. S. Muhly, J. N. Renault, D. P. Williams, “Equivalence and isomorphism for groupoid $C^\ast$-algebras”, J. Operator Theory, 17:1 (1987), 3–22 | MR | Zbl

[91] M. A. Rieffel, “$C^*$-algebras associated with irrational rotations”, Pacific J. Math., 93:2 (1981), 415–429 | MR | Zbl

[92] A. Connes, “$C^\ast$ algèbres et géométrie différentielle”, C. R. Acad. Sci. Paris Sér. A–B, 290:13 (1980), A599–A604 | MR | Zbl

[93] A. Konechny, A. Schwarz, “Introduction to M(atrix) theory and noncommutative geometry”, Phys. Rep., 360:5–6 (2002), 353–465 | DOI | MR | Zbl

[94] M. Crainic, I. Moerdijk, “Foliation groupoids and their cyclic homology”, Adv. Math., 157:2 (2001), 177–197 | DOI | MR | Zbl

[95] M. Hilsum, G. Skandalis, “Morphismes $K$-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov”, Ann. Sci. École Norm. Sup. (4), 20:3 (1987), 325–390 | MR | Zbl

[96] P. Baum, A. Connes, “Geometric $K$-theory for Lie groups and foliations”, Enseign. Math. (2), 46:1–2 (2000), 3–42 | MR | Zbl

[97] G. Segal, “Classifying spaces and spectral sequences”, Inst. Hautes Études Sci. Publ. Math., 34:1 (1968), 105–112 | DOI | MR | Zbl

[98] S. Hurder, Classifying foliations, , 2008 arXiv: abs/0804.1240

[99] A. Connes, “Cyclic cohomology and the transverse fundamental class of a foliation”, Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, Longman, Harlow, 1986, 52–144 | MR | Zbl

[100] R. G. Douglas, J. F. Glazebrook, F. W. Kamber, G. Yu, “Index formulas for geometric Dirac operators in Riemannian foliations”, $K$-Theory, 9:5 (1995), 407–441 | DOI | MR | Zbl

[101] C. C. Moore, C. Schochet, Global analysis on foliated spaces, Math. Sci. Res. Inst. Publ., 9, Springer, New York, 1988 | MR | Zbl

[102] A. Connes, “The von Neumann algebra of a foliation”, Mathematical problems in theoretical physics, Proc. Internat. Conf. (Rome, 1977), Lecture Notes in Phys., 80, Springer, Berlin–New York, 1978, 145–151 | DOI | MR | Zbl

[103] J.-L. Sauvageot, “Semi-groupe de la chaleur transverse sur la $C^*$-algèbre d'un feuilletage riemannien”, J. Funct. Anal., 142:2 (1996), 511–538 | DOI | MR | Zbl

[104] A. Gorokhovsky, “Characters of cycles, equivariant characteristic classes and Fredholm modules”, Comm. Math. Phys., 208:1 (1999), 1–23 | DOI | MR | Zbl

[105] M.-T. Benameur, J. L. Heitsch, “Index theory and non-commutative geometry. I. Higher families index theory”, $K$-Theory, 33:2 (2004), 151–183 | DOI | MR | Zbl

[106] D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemp. Soviet Math., Consultants Bureau, New York, 1986 | MR | MR | Zbl | Zbl

[107] A. Connes, M. Takesaki, “The flow of weights on factors of type III”, Tôhoku Math. J. (2), 29:4 (1977), 473–575 | DOI | MR | Zbl

[108] S. Hurder, A. Katok, “Secondary classes and transverse measure theory of a foliation”, Bull. Amer. Math. Soc. (N. S.), 11:2 (1984), 347–350 | DOI | MR | Zbl

[109] H. Moriyoshi, “On cyclic cocycles associated with the Godbillon–Vey classes”, Geometric study of foliations (Tokyo, 1993), World Sci. Publ., River Edge, NJ, 1994, 411–423 | MR

[110] H. Moriyoshi, T. Natsume, “The Godbillon–Vey cyclic cocycle and longitudinal Dirac operators”, Pacific J. Math., 172:2 (1996), 483–539 | MR | Zbl

[111] J.-L. Brylinski, V. Nistor, “Cyclic cohomology of étale groupoids”, $K$-Theory, 8:4 (1994), 341–365 | DOI | MR | Zbl

[112] N. Berline, M. Vergne, “The Chern character of a transversally elliptic symbol and the equivariant index”, Invent. Math., 124:1–3 (1996), 11–49 | DOI | MR | Zbl

[113] N. Berline, M. Vergne, “L'indice équivariant des opérateurs transversalement elliptiques”, Invent. Math., 124:1–3 (1996), 51–101 | DOI | MR | Zbl

[114] P.-É. Paradan, M. Vergne, Index of transversally elliptic operators, , 2008 arXiv: abs/0804.1225

[115] G. G. Kasparov, $K$-theoretic index theorems for elliptic and transversally elliptic operators, Preprint, Vanderbilt University, Nashvill, 2008; J. $K$-Theory (to appear)

[116] Guo Liang Yu, “Cyclic cohomology and the index theory of transversely elliptic operators”, Selfadjoint and nonselfadjoint operator algebras and operator theory (Fort Worth, TX, 1990), Contemp. Math., 120, Amer. Math. Soc., Providence, RI, 1991, 189–192 | MR | Zbl

[117] T. Kawasaki, “The index of elliptic operators over $V$-manifolds”, Nagoya Math. J., 84 (1981), 135–157 | MR | Zbl

[118] J. Fox, P. Haskell, “The index of transversally elliptic operators for locally free actions”, Pacific J. Math., 164:1 (1994), 41–85 | MR | Zbl

[119] J. Fox, P. Haskell, “The index of transversally elliptic operators on locally homogeneous spaces of finite volume”, Michigan Math. J., 41:2 (1994), 323–336 | DOI | MR | Zbl

[120] P.-É. Paradan, “Localization of the Riemann–Roch character”, J. Funct. Anal., 187:2 (2001), 442–509 | DOI | MR | Zbl

[121] P.-É. Paradan, “$\operatorname{Spin}^c$-quantization and the $K$-multiplicities of the discrete series”, Ann. Sci. École Norm. Sup. (4), 36:5 (2003), 805–845 | DOI | MR | Zbl

[122] V. Mathai, R. B. Melrose, I. M. Singer, “Equivariant and fractional index of projective elliptic operators”, J. Differential Geom., 78:3 (2008), 465–473 | MR | Zbl

[123] V. Mathai, R. B. Melrose, I. M. Singer, “Fractional analytic index”, J. Differential Geom., 74:2 (2006), 265–292 | MR | Zbl

[124] A. Nestke, P. Zickermann, “The index of transversally elliptic complexes”, Proceedings of the 13th winter school on abstract analysis (Srní, 1985), Rend. Circ. Mat. Palermo (2), 34:9 (1985), 165–175 | MR | Zbl

[125] Yu. A. Kordyukov, “Transversally elliptic operators on $G$-manifolds of bounded geometry”, Russian J. Math. Phys., 2:2 (1994), 175–198 ; Yu. A. Kordyukov, “Transversally elliptic operators on a $G$-manifold of bounded geometry”, Russian J. Math. Phys., 3:1 (1995), 41–64 | MR | Zbl | MR | Zbl

[126] Yu. A. Kordyukov, “The Egorov theorem for transverse Dirac-type operators on foliated manifolds”, J. Geom. Phys., 57:11 (2007), 2345–2364 | DOI | MR | Zbl

[127] Yu. A. Kordyukov, “Vanishing theorems for transverse Dirac operators on Riemannian foliations”, Ann. Global Anal. Geom., 34:2 (2008), 195–211 | DOI | MR | Zbl

[128] C. Lazarov, “Transverse index and periodic orbits”, Geom. Funct. Anal., 10:1 (2000), 124–159 | DOI | MR | Zbl

[129] J. A. Álvarez López, Yu. A. Kordyukov, “Distributional Betti numbers of transitive foliations of codimension one”, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, 2002, 159–183 | MR | Zbl

[130] Ch. Deninger, W. Singhof, “A note on dynamical trace formulas”, Dynamical, spectral, and arithmetic zeta functions (San Antonio, TX, 1999), Contemp. Math., 290, Amer. Math. Soc., Providence, RI, 2001, 41–55 | MR | Zbl

[131] D. Fried, “Lefschetz formulas for flows”, The Lefschetz centennial conference, Part III (Mexico City, 1984), Contemp. Math., 58, III, Amer. Math. Soc., Providence, RI, 1987, 19–69 | MR | Zbl

[132] V. Guillemin, “Lectures on spectral theory of elliptic operators”, Duke Math. J., 44:3 (1977), 485–517 | DOI | MR | Zbl

[133] S. J. Patterson, “On Ruelle's zeta-function”, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem, 1990, 163–184 | MR | Zbl

[134] A. Juhl, “Cohomological theory of dynamical zeta functions”, Progr. Math., 194, Birkhäuser, Basel, 2001 | MR | Zbl

[135] Ch. Deninger, Analogies between analysis on foliated spaces and arithmetic geometry, , 2007 arXiv: abs/0709.2801

[136] E. Leichtnam, “An invitation to Deninger's work on arithmetic zeta functions”, Geometry, spectral theory, groups, and dynamics, Contemp. Math., 387, Amer. Math. Soc., Providence, RI, 2005, 201–236 | MR | Zbl

[137] J. A. Álvarez López, Yu. A. Kordyukov, “Lefschetz distribution for Lie foliations”, $C^*$-algebras and elliptic theory. II, Trends Math., Basel, Birkhäuser, 2008, 1–40 | MR | Zbl

[138] Yu. A. Kordyukov, “Noncommutative spectral geometry of Riemannian foliations”, Manuscripta Math., 94:1 (1997), 45–73 | DOI | MR | Zbl

[139] Yu. A. Kordyukov, “Egorov's theorem for transversally elliptic operators on foliated manifolds and noncommutative geodesic flow”, Math. Phys. Anal. Geom., 8:2 (2005), 97–119 | DOI | MR | Zbl

[140] A. Connes, “Gravity coupled with matter and the foundation of non commutative geometry”, Comm. Math. Phys., 182:1 (1996), 155–176 | DOI | MR | Zbl

[141] R. Beals, P. Greiner, Calculus on Heisenberg manifolds, Ann. of Math. Stud., 119, Princeton Univ. Press, Princeton, NJ, 1988 | MR | Zbl

[142] A. Connes, H. Moscovici, “Hopf algebras, cyclic cohomology and the transverse index theorem”, Comm. Math. Phys., 198:1 (1998), 199–246 | DOI | MR | Zbl

[143] A. Connes, H. Moscovici, “Differentiable cyclic cohomology and Hopf algebraic structures in transverse geometry”, Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., 38, Enseignement Math., Geneva, 2001, 217–255 | MR | Zbl

[144] G. Skandalis, “Noncommutative geometry, the transverse signature operator, and Hopf algebras [after A. Connes and H. Moscovici]”, Cyclic homology in non-commutative geometry, Encyclopaedia Math. Sci., 121, Springer, Berlin, 2004, 115–134 | MR | Zbl

[145] D. Perrot, “A Riemann–Roch theorem for one-dimensional complex groupoids”, Comm. Math. Phys., 218:2 (2001), 373–391 | DOI | MR | Zbl

[146] D. Kreimer, “On the Hopf algebra structure of perturbative quantum field theories”, Adv. Theor. Math. Phys., 2:2 (1998), 303–334 | MR | Zbl

[147] A. Connes, D. Kreimer, “Hopf algebras, renormalization and noncommutative geometry”, Comm. Math. Phys., 199:1 (1998), 203–242 | DOI | MR | Zbl

[148] A. Connes, D. Kreimer, “Renormalization in quantum field theory and the Riemann–Hilbert problem. I: The Hopf algebra structure of graphs and the main theorem”, Comm. Math. Phys., 210:1 (2000), 249–273 | DOI | MR | Zbl

[149] A. Connes, D. Kreimer, “Renormalization in quantum field theory and the Riemann–Hilbert problem. II: The $\beta$-function, diffeomorphisms and the renormalization group”, Comm. Math. Phys., 216:1 (2001), 215–241 | DOI | MR | Zbl

[150] A. Connes, H. Moscovici, “Modular Hecke algebras and their Hopf symmetry”, Mosc. Math. J., 4:1 (2004), 67–109 | MR | Zbl

[151] A. Connes, H. Moscovici, “Rankin–Cohen brackets and the Hopf algebra of transverse geometry”, Mosc. Math. J., 4:1 (2004), 111–130 | MR | Zbl

[152] R. G. Douglas, S. Hurder, J. Kaminker, “The longitudinal cocycle and the index of the Toeplitz operators”, J. Funct. Anal., 101:1 (1991), 120–144 | DOI | MR | Zbl

[153] R. G. Douglas, S. Hurder, J. Kaminker, “Cyclic cocycles, renormalization and eta invariants”, Invent Math., 103:1 (1991), 101–181 | DOI | MR | Zbl

[154] L. A. Coburn, R. G. Douglas, D. G. Schaeffer, I. M. Singer, “$C^{\ast}$-algebras of operators on a half-space. II. Index theory”, Inst. Hautes Études Sci. Publ. Math., 40 (1971), 69–79 | DOI | MR | Zbl

[155] B. V. Fedosov, M. A. Šubin, “The index of random elliptic operators. I”, Math. USSR-Sb., 34:5 (1978), 671–699 | DOI | MR | Zbl | Zbl

[156] B. V. Fedosov, M. A. Šubin, “The index of random elliptic operators. II”, Math. USSR-Sb., 35:1 (1979), 131–156 | DOI | MR | Zbl

[157] M. A. Shubin, “The spectral theory and the index of elliptic operators with almost periodic coefficients”, Russian Math. Surveys, 34:2 (1979), 109–157 | DOI | MR | Zbl | Zbl

[158] R. E. Curto, P. S. Muhly, J. Xia, “Toeplitz operators on flows”, J. Funct. Anal., 93:2 (1990), 391–450 | DOI | MR | Zbl

[159] M. Lesch, “On the index of the infinitesimal generator of a flow”, J. Operator Theory, 26:1 (1991), 73–92 | MR | Zbl

[160] A. Carey, J. Phillips, F. Sukochev, “Spectral flow and Dixmier traces”, Adv. Math., 173:1 (2003), 68–113 | DOI | MR | Zbl

[161] M. Ramachandran, “Von Neumann index theorems for manifolds with boundary”, J. Differential Geom., 38:2 (1993), 315–349 | MR | Zbl

[162] G. Perić, “Eta invariants of Dirac operators on foliated manifolds”, Trans. Amer. Math. Soc., 334:2 (1992), 761–782 | DOI | MR | Zbl

[163] J. L. Heitsch, C. Lazarov, “A Lefschetz theorem for foliated manifolds”, Topology, 29:2 (1990), 127–162 | DOI | MR | Zbl

[164] J. L. Heitsch, C. Lazarov, “Rigidity theorems for foliations by surfaces and spin manifolds”, Michigan Math. J., 38:2 (1991), 285–297 | DOI | MR | Zbl

[165] Bai-Ling Wang, “Geometric cycles, index theory and twisted $K$-homology”, J. Noncommut. Geom., 2:4 (2008), 497–552 | MR | Zbl

[166] M.-T. Benameur, “A longitudinal Lefschetz theorem in $K$-theory”, $K$-Theory, 12:3 (1997), 227–257 | DOI | MR | Zbl

[167] S. Vassout, Feuilletages et résidu non commutatif longitudinal, Ph.D. thesis, Institut Jussieu, Paris, 2001

[168] M.-T. Benameur, T. Fack, “Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras”, Adv. Math., 199:1 (2006), 29–87 | DOI | MR | Zbl

[169] S. Vassout, “Unbounded pseudodifferential calculus on Lie groupoids”, J. Funct. Anal., 236:1 (2006), 161–200 | DOI | MR | Zbl

[170] M.-T. Benameur, A. L. Carey, J. Phillips, A. Rennie, F. A. Sukochev, K. P. Wojciechowski, “An analytic approach to spectral flow in von Neumann algebras”, Analysis, geometry and topology of elliptic operators, World Sci. Publ., Hackensack, NJ, 2006, 297–352 | MR | Zbl

[171] B. Monthubert, F. Pierrot, “Indice analytique and groupo\"ides de Lie”, C. R. Acad. Sci. Paris Sér. I Math., 325:2 (1997), 193–198 | DOI | MR | Zbl

[172] V. Nistor, A. Weinstein, P. Xu, “Pseudodifferential operators on differential groupoids”, Pacific J. Math., 189:1 (1999), 117–152 | MR | Zbl

[173] P. Baum, A. Connes, “Leafwise homotopy equivalence and rational Pontrjagin classes”, Foliations (Tokyo, 1983), Adv. Stud. Pure Math., 5, North-Holland, Amsterdam, 1985, 1–14 | MR | Zbl

[174] M. Hilsum, G. Skandalis, “Invariance par homotopie de la signature à coefficients dans un fibré presque plat”, J. Reine Angew. Math., 423 (1992), 73–99 | MR | Zbl

[175] S. Hurder, “Coarse geometry of foliations”, Geometric study of foliations (Tokyo, 1993), World Sci. Publ., River Edge, NJ, 1994, 35–96 | MR

[176] P. Carrillo Rouse, Higher localized analytic indices and strict deformation quantization, , 2008 arXiv: abs/0810.4480

[177] V. Nistor, “The index of operators on foliated bundles”, J. Funct. Anal., 141:2 (1996), 421–434 | DOI | MR | Zbl

[178] V. Nistor, “On the Cuntz–Quillen boundary map”, C. R. Math. Rep. Acad. Sci. Canada, 16:5 (1994), 203–208 | MR | Zbl

[179] J. L. Heitsch, “Bismut superconnections and the Chern character for Dirac operators on foliated manifolds”, $K$-Theory, 9:6 (1995), 507–528 | DOI | MR | Zbl

[180] X. Jiang, “An index theorem on foliated flat bundles”, $K$-Theory, 12:4 (1997), 319–359 | DOI | MR | Zbl

[181] R. G. Douglas, J. Kaminker, “Induced cyclic cocycles and higher eta invariants”, J. Funct. Anal., 147:2 (1997), 301–326 | DOI | MR | Zbl

[182] I. N. Bernshtein, B. I. Rozenfel'd, “Homogeneous spaces of infinite-dimensional Lie algebras and characharacteristic classes of foliations”, Russian Math. Surveys, 28:4 (1973), 107–142 | DOI | MR | Zbl | Zbl

[183] A. Gorokhovsky, “Secondary characteristic classes and cyclic cohomology of Hopf algebras”, Topology, 41:5 (2002), 993–1016 | DOI | MR | Zbl

[184] A. Gorokhovsky, J. Lott, “Local index theory over étale groupoids”, J. Reine Angew. Math., 560 (2003), 151–198 | DOI | MR | Zbl

[185] A. Gorokhovsky, J. Lott, “Local index theory over foliation groupoids”, Adv. Math., 204:2 (2006), 413–447 | DOI | MR | Zbl

[186] E. Leichtnam, P. Piazza, “Étale groupoids, eta invariants and index theory”, J. Reine Angew. Math., 587 (2005), 169–233 | DOI | MR | Zbl

[187] E. Leichtnam, P. Piazza, “Cut-and-paste on foliated bundles”, Spectral geometry of manifolds with boundary and decomposition of manifolds, Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005, 151–192 | MR | Zbl

[188] V. Nistor, “A bivariant Chern character for $p$-summable quasihomomorphisms”, $K$-Theory, 5:3 (1991), 193–211 | DOI | MR | Zbl

[189] V. Nistor, “A bivariant Chern–Connes character”, Ann. of Math. (2), 138:3 (1993), 555–590 | DOI | MR | Zbl

[190] A. Gorokhovsky, “Bivariant Chern character and longitudinal index”, J. Funct. Anal., 237:1 (2006), 105–134 | DOI | MR | Zbl

[191] J. L. Heitsch, C. Lazarov, “A general families index theorem”, $K$-Theory, 18:2 (1999), 181–202 | DOI | MR | Zbl

[192] M.-T. Benameur, J. L. Heitsch, “Index theory and non-commutative geometry. II. Dirac operators and index bundles”, J. K-Theory, 1:2 (2008), 305–356 | DOI | MR | Zbl

[193] M.-T. Benameur, J. L. Heitsch, The higher harmonic signature for foliations I. The untwisted case, , 2007 arXiv: abs/0711.0352

[194] M.-T. Benameur, “Cyclic cohomology and the family Lefschetz theorem”, Math. Ann., 323:1 (2002), 97–121 | DOI | MR | Zbl

[195] M.-T. Benameur, “A higher Lefschetz formula for flat bundles”, Trans. Amer. Math. Soc., 355:1 (2003), 119–142 | DOI | MR | Zbl

[196] P. Carrillo Rouse, “A Schwartz type algebra for the tangent groupoid”, $K$-Theory and Noncommutative Geometry (Valladolid, 2006), European Mathematical Society (EMS), Zürich, 2008, 181–200 | Zbl

[197] P. Carrillo Rouse, Compactly supported analytic indices for Lie groupoids, , 2008 arXiv: abs/0803.2060