Integral models of representations of the current groups of simple Lie groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 2, pp. 205-271

Voir la notice de l'article provenant de la source Math-Net.Ru

For the class of locally compact groups $P$ that can be written as the semidirect product of a locally compact subgroup $P_0$ and a one-parameter group $\mathbb R^*_+$ of automorphisms of $P_0$, a new model of representations of the current groups $P^X$ is constructed. The construction is applied to the maximal parabolic subgroups of all simple groups of rank 1. In the case of the groups $G=\mathrm{SO}(n,1)$ and $G=\mathrm{SU}(n,1)$, an extension is constructed of representations of the current groups of their maximal parabolic subgroups to representations of the current groups $G^X$. The key role in the construction is played by a certain $\sigma$-finite measure (the infinite-dimensional Lebesgue measure) in the space of distributions. Bibliography: 32 titles.
Keywords: current group, integral model, Fock representation, canonical representation, special representation, infinite-dimensional Lebesgue measure.
@article{RM_2009_64_2_a1,
     author = {A. M. Vershik and M. I. Graev},
     title = {Integral models of representations of the current groups of simple {Lie} groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {205--271},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_2_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. I. Graev
TI  - Integral models of representations of the current groups of simple Lie groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 205
EP  - 271
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_2_a1/
LA  - en
ID  - RM_2009_64_2_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. I. Graev
%T Integral models of representations of the current groups of simple Lie groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 205-271
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2009_64_2_a1/
%G en
%F RM_2009_64_2_a1
A. M. Vershik; M. I. Graev. Integral models of representations of the current groups of simple Lie groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 2, pp. 205-271. http://geodesic.mathdoc.fr/item/RM_2009_64_2_a1/