Integral models of representations of the current groups of simple Lie groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 2, pp. 205-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the class of locally compact groups $P$ that can be written as the semidirect product of a locally compact subgroup $P_0$ and a one-parameter group $\mathbb R^*_+$ of automorphisms of $P_0$, a new model of representations of the current groups $P^X$ is constructed. The construction is applied to the maximal parabolic subgroups of all simple groups of rank 1. In the case of the groups $G=\mathrm{SO}(n,1)$ and $G=\mathrm{SU}(n,1)$, an extension is constructed of representations of the current groups of their maximal parabolic subgroups to representations of the current groups $G^X$. The key role in the construction is played by a certain $\sigma$-finite measure (the infinite-dimensional Lebesgue measure) in the space of distributions. Bibliography: 32 titles.
Keywords: current group, integral model, Fock representation, canonical representation, special representation, infinite-dimensional Lebesgue measure.
@article{RM_2009_64_2_a1,
     author = {A. M. Vershik and M. I. Graev},
     title = {Integral models of representations of the current groups of simple {Lie} groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {205--271},
     year = {2009},
     volume = {64},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_2_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. I. Graev
TI  - Integral models of representations of the current groups of simple Lie groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 205
EP  - 271
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_2_a1/
LA  - en
ID  - RM_2009_64_2_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. I. Graev
%T Integral models of representations of the current groups of simple Lie groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 205-271
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2009_64_2_a1/
%G en
%F RM_2009_64_2_a1
A. M. Vershik; M. I. Graev. Integral models of representations of the current groups of simple Lie groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 2, pp. 205-271. http://geodesic.mathdoc.fr/item/RM_2009_64_2_a1/

[1] A. M. Vershik, I. M. Gel'fand, M. I. Graev, “Representations of the group $SL(2,\mathbf R)$, where $\mathbf R$ is a ring of functions”, Russian Math. Surveys, 28:5 (1973), 87–132 | DOI | MR | Zbl

[2] A. M. Vershik, I. M. Gel'fand, M. I. Graev, “Irreducible representations of the group $G^X$ and cohomologies”, Funct. Anal. Appl., 8:2 (1974), 151–153 | DOI | MR | Zbl

[3] H. Araki, “Factorizable representation of current algebra. Non commutative extension of the Lévy–Khinchin formula and cohomology of a solvable group with values in a Hilbert space”, Publ. Res. Inst. Math. Sci., 5:3 (1970), 361–422 | DOI | MR | Zbl

[4] A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie, Textes Math., 2, CEDIC, Paris, 1980 ; A. Gisharde, Kogomologii topologicheskikh grupp i algebr Li, Mir, M., 1984 | MR | Zbl | MR | Zbl

[5] D. A. Kazhdan, “Connection of the dual space of a group with the structure of its close subgroups”, Funct. Anal. Appl., 1:1 (1967), 63–65 | DOI | MR | Zbl

[6] B. Bekka, P. de la Harpe, A. Valette, Kazhdan's property ($T$), New Math. Monogr., 11, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl

[7] A. M. Vershik, S. I. Karpushev, “Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions”, Math. USSR-Sb., 47:2 (1984), 513–526 | DOI | MR | Zbl

[8] A. M. Vershik, I. M. Gel'fand, M. I. Graev, “Representations of the group of diffeomorphisms and conditionally positive definite functions”, Russian Math. Surveys, 30:6 (1975), 1–50 | DOI | MR | Zbl | Zbl

[9] A. M. Vershik, I. M. Gel'fand, M. I. Graev, “Representations of the group of smooth mappings of a manifold $X$ into a compact Lie group”, Compositio Math., 35:3 (1977), 299–334 | MR | Zbl

[10] A. M. Veršik, I. M. Gel'fand, M. I. Graev, “Representations of the group of functions taking values in a compact Lie group”, Compositio Math., 42:2 (1980), 217–243 | MR | Zbl

[11] A. M. Vershik, I. M. Gel'fand, M. I. Graev, “A commutative model of representation of the group of flows $SL(2,\mathbb R)^X$ that is connected with a unipotent subgroup”, Funct. Anal. Appl., 17:2 (1983), 137–139 | DOI | MR | Zbl

[12] I. M. Gelfand, M. I. Graev, A. M. Vershik, “Models of representations of current groups”, Representations of Lie groups and Lie algebras (Budapest, 1971), Akad. Kiadó, Budapest, 1985, 121–179 | MR | Zbl

[13] M. I. Graev, A. M. Vershik, “A commutative model of a representation of the group $O(n,1)^X$ and a generalized Lebesgue measure in the space of distributions”, Funct. Anal. Appl., 39:2 (2005), 81–90 | DOI | MR | Zbl

[14] M. I. Graev, A. M. Vershik, “The basic representation of the current group $O(n,1)^X $ in the $L^2$ space over the generalized Lebesgue measure”, Indag. Math. (N. S.), 16:3–4 (2005), 499–529 | DOI | MR | Zbl

[15] A. M. Vershik, M. I. Graev, “Integral models of representations of current groups”, Funct. Anal. Appl., 42:1 (2008), 19–27 | DOI | MR | Zbl

[16] A. M. Vershik, M. I. Graev, “Integral models of unitary representations of current groups with values in semidirect products”, Funct. Anal. Appl., 42:4 (2008), 279–289 | DOI | MR | Zbl

[17] P. Delorme, “Irreductibilité de certaines représentations de $G^X$”, J. Funct. Anal., 30:1 (1978), 36–47 | DOI | MR | Zbl

[18] R. S. Ismagilov, “Representations of infinite-dimensional groups”, Transl. Math. Monogr., 152, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[19] A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?”, Proc. Steklov Inst. Math., 259:2 (2007), 248–272 | DOI | MR | Zbl

[20] A. M. Vershik, “The behavior of the Laplace transform of the invariant measure on the hypersphere of high dimension”, J. Fixed Point Theory Appl., 3:2 (2008), 317–329 | DOI | MR | Zbl

[21] A. M. Vershik, “Invariant measures for the continual Cartan subgroup”, J. Funct. Anal., 255:9 (2008), 2661–2682 | DOI | Zbl

[22] N. Tsilevich, A. Vershik, M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process”, J. Funct. Anal., 185:1 (2001), 274–296 | DOI | MR | Zbl

[23] A. Vershik, B. Tsirelson, “Examples of nonlinear continuous tensor product of measure spaces and non-Fock factorisations”, Rev. Math. Phys., 10:1 (1998), 81–145 | DOI | MR | Zbl

[24] A. M. Vershik, M. I. Graev, “Structure of the complementary series and special representations of the groups $O(n,1)$ and $U(n,1)$”, Russian Math. Surveys, 61:5 (2006), 799–884 | DOI | MR | Zbl

[25] I. M. Gel'fand, M. I. Graev, “Special representations of the group ${\rm SU}(n,1)$ and projective unitary representations of the current group ${\rm SU}(n,1)\sp X$”, Russian Acad. Sci. Dokl. Math., 48:2 (1994), 291–295 | MR | Zbl

[26] V. F. Molchanov, “Canonical representations and overgroups for hyperboloids”, Funct. Anal. Appl., 39:4 (2005), 284–295 | DOI | MR | Zbl

[27] A. Perelomov, Generalized coherent states and their applications, Texts Monogr. Phys., Springer-Verlag, Berlin, 1986 | MR | MR | Zbl | Zbl

[28] A. Guichardet, “Symmetric Hilbert space and related topics”, Lecture Notes in Math., 261, Springer-Verlag, Berlin–New York, 1972 | DOI | MR | Zbl

[29] P. Delorme, “$1$-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations”, Bull. Soc. Math. France, 105:3 (1977), 281–336 | MR | Zbl

[30] A. M. Vershik, N. V. Tsilevich, “Fock factorizations, and decompositions of the $L^2$ spaces over general Lévy processes”, Russian Math. Surveys, 58:3 (2003), 427–472 | DOI | MR | Zbl

[31] K. R. Parthasarathy, K. Schmidt, Positive definite kernels, continuous tensor products, and central limit theorems of probability theory, Lecture Notes in Math., 272, Springer-Verlag, Berlin–New York, 1972 | DOI | MR | Zbl

[32] F. A. Berezin, “Representations of a continuous direct product of universal coverings of the group of motions of the complex ball”, Trans. Moscow Math. Soc., 36 (1979), 281–298 | MR | Zbl