On canonical parametrization of the phase spaces of equations of isomonodromic deformations of Fuchsian systems of dimension $2\times 2$. Derivation of the Painlevé VI equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 1, pp. 45-127
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey considers the factorization, by linear changes of the sought vector-function, of the manifold of $2\times 2$ matrix linear differential equations of first order with simple poles on the right-hand side. It is shown how under a parametrization of such quotient manifolds there naturally appear the Garnier–Painlevé VI equations, as well as algebro-geometric constructions related to them: the Okamoto surface and a rational atlas of the Darboux coordinates on it.
@article{RM_2009_64_1_a1,
     author = {M. V. Babich},
     title = {On canonical parametrization of the phase spaces of equations of isomonodromic deformations of {Fuchsian} systems of dimension~$2\times 2$. {Derivation~of~the~Painlev\'e~VI} equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {45--127},
     year = {2009},
     volume = {64},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2009_64_1_a1/}
}
TY  - JOUR
AU  - M. V. Babich
TI  - On canonical parametrization of the phase spaces of equations of isomonodromic deformations of Fuchsian systems of dimension $2\times 2$. Derivation of the Painlevé VI equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 45
EP  - 127
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2009_64_1_a1/
LA  - en
ID  - RM_2009_64_1_a1
ER  - 
%0 Journal Article
%A M. V. Babich
%T On canonical parametrization of the phase spaces of equations of isomonodromic deformations of Fuchsian systems of dimension $2\times 2$. Derivation of the Painlevé VI equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 45-127
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2009_64_1_a1/
%G en
%F RM_2009_64_1_a1
M. V. Babich. On canonical parametrization of the phase spaces of equations of isomonodromic deformations of Fuchsian systems of dimension $2\times 2$. Derivation of the Painlevé VI equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 1, pp. 45-127. http://geodesic.mathdoc.fr/item/RM_2009_64_1_a1/

[1] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, “From Gauss to Painlevé. A modern theory of special functions”, Aspects Math., E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | MR | Zbl

[2] K. Okamoto, “Studies in the Painlevé equations. I. Sixth Painlevé equation $\mathrm{P_{VI}}$”, Ann. Mat. Pura Appl. (4), 146:1 (1986), 337–381 | DOI | MR | Zbl

[3] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé transcendents. The Riemann–Hilbert approach, Math. Surveys Monogr., 128, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl

[4] S. Yu. Slavyanov, W. Lay, “Special functions. A unified theory based on singularities”, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2000 ; S. Yu. Slavyanov, V. Lei, Spetsialnye funktsii: Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii Dialekt, SPb., 2002 | MR | Zbl

[5] Yu. I. Manin, “Sixth Painlevé equation, universal elliptic curve, and mirror of $\mathbf{P}^2$”, Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, 186, Amer. Math. Soc., Providence, RI, 1998, 131–151 | MR | Zbl

[6] D. Arinkin, S. Lysenko, “Isomorphisms between moduli spaces of $\mathrm{SL}(2)$-bundles with connections on $\mathbf{P}^1\setminus\{x_1,\dots,x_4\}$”, Math. Res. Lett., 4:2–3 (1997), 181–190 | MR | Zbl

[7] N. Hitchin, “Geometrical aspects of Schlesinger's equation”, J. Geom. Phys., 23:3–4 (1997), 287–300 | DOI | MR | Zbl

[8] T. Shioda, K. Takano, “On some Hamiltonian structures of Painlevé systems. I”, Funkcial. Ekvac., 40:2 (1997), 271–291 | MR | Zbl

[9] M. Jimbo, T. Miwa, K. Ueno, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau$-function”, Phys. D, 2:2 (1981), 306–352 | DOI | MR

[10] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2:3, 407–448 ; “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III”, Phys. D, 4:1 (1981), 26–46 | DOI | MR | DOI | MR

[11] A. V. Kitaev, D. A. Korotkin, “On solutions of the Schlesinger equations in terms of $\Theta$-functions”, Internat. Math. Res. Notices, 1998, no. 17, 877–905 | DOI | MR | Zbl

[12] B. Dubrovin, M. Mazzocco, “Canonical structure and symmetries of the Schlesinger equations”, Comm. Math. Phys., 271:2 (2007), 289–373 ; , 2003 arXiv: math/0311261v4 | DOI | MR | Zbl

[13] A. A. Bolibrukh, Hilbert's twenty-first problem for linear Fuchsian systems, Proc. Steklov Inst. Math., no. 5 (206), 1995 | MR | Zbl | Zbl

[14] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000

[15] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1979 ; B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I: The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1984 ; Modern geometry – methods and applications. Part II: The geometry and topology of manifolds, Grad. Texts in Math., 104, Springer-Verlag, New York, 1985 | MR | Zbl | MR | Zbl | MR | Zbl

[16] K. Okamoto, “Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé”, Japan. J. Math. (N. S.), 5 (1979), 1–79 | MR | Zbl

[17] H. Flashka, D. W. McLaughlin, “Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions”, Progr. Theoret. Phys., 55:2 (1976), 438–456 | DOI | MR | Zbl

[18] S. P. Novikov, A. P. Veselov, “On Poisson brackets compatible with algebraic geometry and Korteweg–de Vries dynamics on the set of finite-zone potentials”, Soviet Math. Dokl., 26 (1982), 357–362 | MR | Zbl

[19] I. M. Krichever, D. H. Phong, “Symplectic forms in the theory of solitons”, Surveys in differential geometry: integral systems, Surv. Differ. Geom., 4, Int. Press, Boston, MA, 1998, 239–313 | MR | Zbl

[20] I. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl

[21] I. M. Krichever, “An analogue of the d'Alembert formula for the equations of a principal chiral field and the sine-Gordon equation”, Soviet Math. Dokl., 22:1 (1980), 79–84 | MR | Zbl

[22] D. V. Anosov, A. A. Bolibruch, “The Riemann–Hilbert problem”, Aspects Math., E22, Vieweg, Braunschweig, 1994 | MR | Zbl

[23] A. A. Bolibruch, “On isomonodromic deformations of Fuchsian systems”, J. Dynam. Control Systems, 3:4 (1997), 589–604 | DOI | MR | Zbl

[24] M. V. Babich, “About coordinates on the phase spaces of the Schlesinger system and the Garnier–Painlevé 6 system”, Dokl. Math., 75:1 (2007), 71–75 | DOI | MR

[25] M. V. Babich, Uravneniya Shlezingera i uravneniya Garne–Penleve 6, geometriya perekhoda, Preprint No 06.2006, POMI, Spb., 2006, 75 pp.

[26] M. V. Babich, About coordinates on the phase-spaces of Schlesinger system ($n+1$ matrices, $sl(2,C)$-case) and Garnier–Painlevé 6 system, , 2006 arXiv: math/0605544

[27] I. R. Shafarevich, Basic algebraic geometry. I: Varieties in projective space, Springer-Verlag, Berlin, 1994 | MR | Zbl | Zbl

[28] L. Fuchs, “Ueber Differentialgleichungen, deren Integrale feste Verzweigungspunkte besitzen”, Sitzungsber. Konigl. Preuss. Akad. Wiss. Berlin, 32 (1884), 699–710 | Zbl

[29] A. H. M. Levelt, “Hypergeometric functions. I”, Nederl. Akad. Wetensch. Proc. Ser. A 64, 23 (1961), 361–372 ; “Hypergeometric functions. II”, 373–385 ; “Hypergeometric functions. III”, 386–396 ; “Hypergeometric functions. IV”, 397–403 | MR | Zbl | MR | MR | MR

[30] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[31] L. Schlesinger, “Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten”, J. Reine Math., 141 (1912), 96–145 | Zbl

[32] V. I. Arnol'd, Mathematical methods of classical mechanics, Second edition, Grad. Texts in Math., 60, Springer-Verlag, New York, 1989 | MR | MR | Zbl

[33] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, Sovremennaya matematika, In-t kompyuter. issled., M.–Izhevsk, 2003

[34] J. Marsden, A. Weinstein, “Reduction of symplectic manifold with symmetry”, Rep. Math. Phys., 5:1 (1974), 121–130 | DOI | MR | Zbl

[35] V. V. Trofimov, Introduction to geometry of manifolds with symmetry, Math. Appl., 270, Kluwer Acad. Publ., Dordrecht, 1994 | MR | MR | Zbl | Zbl

[36] M. Postnikov, Lie groups and algebras, Lectures in geometry. Semester V, Mir, Moscow, 1986 | MR | MR | Zbl

[37] M. Audin, “Lectures on gauge theory and integrable systems”, Gauge theory and symplectic geometry (Montreal, PQ, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 488, Kluwer Acad. Publ., Dordrecht, 1997, 1–48 | MR | Zbl

[38] M. Kapovich, M. J. Millson, “The symplectic geometry of polygons in Euclidean space”, J. Differential Geom., 44:3 (1996), 479–513 | MR | Zbl

[39] S. Yu. Slavyanov, “Isomonodromic deformations of Heun and Painlevé equations”, Theoret. and Math. Phys., 123:3 (2000), 744–753 | DOI | MR | Zbl

[40] S. Yu. Slavyanov, F. R. Vukajlović, “Isomonodromic deformations and ‘antiquantization’ for the simplest ordinary differential equations”, Theoret. and Math. Phys., 150:1 (2007), 123–131 | DOI | MR | Zbl

[41] N. I. Akhiezer, Elements of the theory of elliptic functions, Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990 | MR | MR | Zbl | Zbl

[42] M. V. Babich, L. A. Bordag, “Projective differential geometrical structure of the Painlevé equations”, J. Differential Equations, 157:2 (1999), 452–485 | DOI | MR | Zbl