Closed 1-forms in topology and dynamics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1079-1139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article surveys recent progress of results in topology and dynamics based on techniques of closed 1-forms. Our approach lets us draw conclusions about properties of flows by studying homotopical and cohomological features of manifolds. More specifically, a Lusternik–Schnirelmann type theory for closed 1-forms is described, along with the focusing effect for flows and the theory of Lyapunov 1-forms. Also discussed are recent results about cohomological treatment of the invariants $\operatorname{cat}(X,\xi)$ and $\operatorname{cat}^1(X,\xi)$ and their explicit computation in certain examples.
@article{RM_2008_63_6_a5,
     author = {M. Farber and D. Sch\"utz},
     title = {Closed 1-forms in topology and dynamics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1079--1139},
     year = {2008},
     volume = {63},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_6_a5/}
}
TY  - JOUR
AU  - M. Farber
AU  - D. Schütz
TI  - Closed 1-forms in topology and dynamics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 1079
EP  - 1139
VL  - 63
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_6_a5/
LA  - en
ID  - RM_2008_63_6_a5
ER  - 
%0 Journal Article
%A M. Farber
%A D. Schütz
%T Closed 1-forms in topology and dynamics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 1079-1139
%V 63
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2008_63_6_a5/
%G en
%F RM_2008_63_6_a5
M. Farber; D. Schütz. Closed 1-forms in topology and dynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1079-1139. http://geodesic.mathdoc.fr/item/RM_2008_63_6_a5/

[1] S. P. Novikov, “Multivalued functions and functionals. An analogue of the Morse theory”, Soviet Math. Dokl., 24 (1981), 222–226 | MR | Zbl

[2] S. P. Novikov, “The Hamiltonian formalism and a multi-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl

[3] S. P. Novikov, “Bloch homology. Critical points of functions and closed $1$-forms”, Soviet Math. Dokl., 33 (1986), 551–555 | MR | Zbl

[4] S. P. Novikov, “Quasiperiodic structures in topology”, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 223–235 | MR | Zbl

[5] S. P. Novikov, “Variational methods and periodic solutions of Kirchhoff-type equations. II”, Funct. Anal. Appl., 15:4 (1981), 263–274 | DOI | MR | Zbl

[6] S. P. Novikov, I. Smel'tser, “Periodic solutions of the Kirchhoff's equations for the free motion of a rigid body in a fluid and the extended theory of Lyusternik–Shnirel'man–Morse theory (LSM). I”, Funct. Anal. Appl., 15:3 (1981), 197–207 | DOI | MR | Zbl

[7] S. P. Novikov, I. Taimanov, “Periodic extremals in multivalued or not everywhere positive functionals”, Soviet Math. Dokl., 29 (1984), 18–20 | MR | Zbl

[8] J.-Cl. Sikorav, Points fixes de difféomorphismes symplectiques, intersections de sous-variétés lagrangiennes, et singularités de un-formes fermées, Thèse de Doctorat d'Etat Es Sciences Mathématiques, Université Paris-Sud, Centre d'Orsay, 1987

[9] J.-Cl. Sikorav, “Un problème de disjonction par isotopie symplectique dans un fibré cotangent”, Ann. Sci. École Norm. Sup. (4), 19:4 (1986), 543–552 | MR | Zbl

[10] H. Hofer, D. A. Salamon, “Floer homology and Novikov rings”, The Floer memorial volume, Progr. Math., 133, Birkhäuser, Basel, 1995, 483–524 | MR | Zbl

[11] Yong-Geun Oh, “Spectral invariants, analysis of the Floer moduli space and geometry of Hamiltonian diffeomorphisms”, Duke Math. J., 130:2 (2005), 199–295 | DOI | MR | Zbl

[12] M. Usher, Spectral numbers in Floer theories, , 2007 arXiv: 0709.1127

[13] M. Farber, Topology of closed one-forms, Math. Surveys Monogr., 108, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[14] A. V. Pajitnov, Circle-valued Morse theory, de Gruyter Stud. Math., 32, Walter de Gruyter, Berlin, 2006 | MR | Zbl

[15] M. Farber, “Zeros of closed 1-forms, homoclinic orbits and Lusternik–Schnirelman theory”, Topol. Methods Nonlinear Anal., 19:1 (2002), 123–152 | MR | Zbl

[16] M. Farber, “Lusternik–Schnirelman theory and dynamics”, Lusternik–Schnirelmann category and related topics (South Hadley, MA, 2001), Contemp. Math., 316, Amer. Math. Soc., Providence, RI, 2002, 95–111 | MR | Zbl

[17] M. Farber, T. Kappeler, J. Latschev, E. Zehnder, “Lyapunov 1-forms for flows”, Ergodic Theory Dynam. Systems, 24:5 (2004), 1451–1475 | DOI | MR | Zbl

[18] M. Farber, T. Kappeler, J. Latschev, E. Zehnder, “Smooth Lyapunov 1-forms”, Enseign. Math. (2), 50:1–2 (2004), 3–17 | MR | Zbl

[19] J. Latschev, “Closed forms transverse to singular foliations”, Manuscripta Math., 121:3 (2006), 293–315 | DOI | MR | Zbl

[20] J. Latschev, “Coherent measures and the existence of smooth Lyapunov 1-forms for flows”, Topology, 45:4 (2006), 707–723 | DOI | MR | Zbl

[21] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math., 38, Amer. Math. Soc., Providence, RI, 1978 | MR | Zbl

[22] C. Conley, “The gradient structure of a flow. I”, Ergodic Theory Dynam. Systems, 8 (1988), 11–26 | MR | Zbl

[23] S. Schwartzman, “Asymptotic cycles”, Ann. of Math. (2), 66:2 (1957), 270–284 | DOI | MR | Zbl

[24] S. Schwartzman, “Global cross-sections of compact dynamical systems”, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 786–791 | DOI | MR | Zbl

[25] M. Farber, R. Geoghegan, D. Schütz,, Closed 1-forms in topology and geometric group theory, , 2008 arXiv: 0810.0962

[26] R. Bieri, W. D. Neumann, R. Strebel, “A geometric invariant of discrete groups”, Invent. Math., 90:3 (1987), 451–477 | DOI | MR | Zbl

[27] R. Bieri, B. Renz, “Valuations on free resolutions and higher geometric invariants of groups”, Comment. Math. Helv., 63:3 (1988), 464–497 | DOI | MR | Zbl

[28] A. V. Pazhitnov, “On the sharpness of Novikov type inequalities for manifolds with free abelian fundamental group”, Math. USSR Sbornik, 68 (1991), 351–389 | DOI | MR | Zbl

[29] M. Sh. Farber, “Exactness of Novikov inequalities”, Funct. Anal. Appl., 19:1 (1985), 40–48 | DOI | MR | Zbl

[30] Proc. Steklov Inst. Math., 1999, no. 2, 363–371 | MR | Zbl

[31] M. Farber, “Counting zeros of closed 1-forms”, Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, 202, eds. V. Turaev, A. Vershik, Amer. Math. Soc., Providence, RI, 2001, 95–107 | MR | Zbl

[32] P. M. Cohn, Free rings and their relations, Second ed., London Math. Soc. Monogr., 19, Academic Press, London, 1985 ; P. Kon, Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR | Zbl | MR

[33] M. Farber, “Morse–Novikov critical point theory, Cohn localization and Dirichlet units”, Commun. Contemp. Math., 1:4 (1999), 467–495 | DOI | MR | Zbl

[34] M. Farber, D. Schütz, “Novikov–Betti numbers and the fundamental group”, Russian Math. Surveys, 61:6 (2006), 1173–1175 | DOI | MR | Zbl

[35] A. Pazhitnov, “Morse theory of closed 1-forms”, Algebraic topology (Poznań, 1989), Lecture Notes in Math., 1474, Springer, Berlin, 1991, 98–110 | DOI | MR | Zbl

[36] A. V. Pazhitnov, “On the Novikov complex of rational Morse forms”, Ann. Fac. Sci. Toulouse Math. (6), 4:2 (1995), 297–338 | MR | Zbl

[37] A. Ranicki, “Finite domination and Novikov rings”, Topology, 34:3 (1995), 619–632 | DOI | MR | Zbl

[38] A. Ranicki, “The algebraic construction of the Novikov complex of a circle-valued Morse function”, Math. Ann., 322:4 (2002), 745–785 | DOI | MR | Zbl

[39] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR | Zbl

[40] M. Farber, D. Schütz, “Closed 1-forms with at most one zero”, Topology, 45:3 (2006), 465–473 | DOI | MR | Zbl

[41] F. Latour, “Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham”, Publ. Math. Inst. Hautes Etudes Sci., 80 (1994), 135–194 | DOI | MR | Zbl

[42] G. Levitt, “1-formes fermées singulières et groupe fondamental”, Invent. Math., 88:3 (1987), 635–667 | DOI | MR | Zbl

[43] F. Takens, “The minimal number of critical points of a function on a compact manifold and the Lusternik–Schnirelman category”, Invent. Math., 6:3 (1968), 197–244 | DOI | MR | Zbl

[44] A. Dold, Lectures on algebraic topology, Grundlehren Math. Wiss., 200, Springer-Verlag, New York–Berlin, 1972 ; Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR | Zbl | MR

[45] S. Lang, Real and functional analysis, Third ed., Grad. Texts in Math., 142, Springer-Verlag, New York, 1993 | MR | Zbl

[46] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966 | MR | Zbl

[47] M. Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987 | MR | Zbl

[48] D. Fried, “The geometry of cross sections to flows”, Topology, 21:4 (1982), 353–371 | DOI | MR | Zbl

[49] H. Fan, J. Jost, “Novikov–Morse theory for dynamical systems”, Calc. Var. Partial Differential Equations, 17:1 (2003), 29–73 | DOI | MR | Zbl

[50] H. Fan, J. Jost, “Conley index theory and Novikov–Morse theory”, Pure Appl. Math. Q., 1:4, part 3 (2005), 939–971 ; , 2003 arXiv: math/0312018 | MR | Zbl

[51] M. Farber, T. Kappeler, “Lusternik–Schnirelman theory and dynamics. II”, Proc. Steklov Inst. Math., 2004, no. 4, 232–245 | MR | Zbl

[52] D. Schütz, “On the Lusternik–Schnirelman theory of a real cohomology class”, Manuscripta Math., 113:1 (2004), 85–106 | DOI | MR | Zbl

[53] S. Smale, “Stable manifolds for differential equations and diffeomorphisms”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 97–116 | MR | Zbl

[54] J. Latschev, “Flows with Lyapunov one-forms and a generalization of Farber's theorem on homoclinic cycles”, Int. Math. Res. Not., 5 (2004), 239–247 | DOI | MR | Zbl

[55] M. Farber, D. Schütz, “Cohomological estimates for $\operatorname{cat}(X,\xi)$”, Geom. Topol., 11 (2007), 1255–1288 | DOI | MR | Zbl

[56] M. Farber, M. Belolipetsky, “Homological category weights and estimates for $\operatorname{cat}^1(X,\xi)$”, J. Eur. Math. Soc. (JEMS), 10:1 (2008), 243–266 | MR | Zbl

[57] M. Farber, D. Schütz, “Moving homology classes to infinity”, Forum Math., 19:2 (2007), 281–296 | DOI | MR | Zbl

[58] E. Fadell, S. Husseini, “Category weight and Steenrod operations”, Bol. Soc. Mat. Mexicana (2), 37:1–2 (1992), 151–161 | MR | Zbl

[59] Y. B. Rudyak, “On category weight and its applications”, Topology, 38:1 (1999), 37–55 | DOI | MR | Zbl

[60] J. Strom, “Essential category weight and phantom maps”, Cohomological methods in homotopy theory (Bellaterra, 1998), Progr. Math., 196, Birkhaüser, Basel, 2001, 409–415 | MR | Zbl

[61] M. A. Krasnoselskii, “O spetsialnykh pokrytiyakh konechnomernoi sfery”, Dokl. AN SSSR, 103 (1955), 961–964 | MR | Zbl