@article{RM_2008_63_6_a4,
author = {R. N. Karasev},
title = {Topological methods in combinatorial geometry},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1031--1078},
year = {2008},
volume = {63},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_6_a4/}
}
R. N. Karasev. Topological methods in combinatorial geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1031-1078. http://geodesic.mathdoc.fr/item/RM_2008_63_6_a4/
[1] L. E. J. Brouwer, “Über Abbildung von Mannigfaltigkeiten”, Math. Ann., 71:1 (1911), 97–115 | DOI | MR | Zbl
[2] C. Carathéodory, “Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen”, Rend. Circ. Mat. Palermo, 32 (1911), 193–217 | DOI | Zbl
[3] J. Radon, “Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten”, Math. Ann., 83:1–2 (1921), 113–115 | DOI | MR | Zbl
[4] E. Helly, “Über Mengen konvexer Körper mit gemeinschaftlichen Punkten”, Jahresber. Deutsch. Math.-Verein., 32 (1923), 175–176 | Zbl
[5] E. Sperner, “Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes”, Abh. Math. Sem. Univ. Hamburg, 6:1 (1928), 265–272 | DOI | Zbl
[6] B. Knaster, C. Kuratowski, S. Mazurkiewicz, “Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe”, Fund. Math., 14 (1929), 132–137 | Zbl
[7] A. W. Tucker, “Some topological properties of disk and sphere”, Proceedings of the First Canadian Mathematical Congress (Montreal, 1945), University of Toronto Press, Toronto, 1946, 285–309 | MR | Zbl
[8] L. A. Lyusternik, L. G. Shnirelman, Topologicheskie metody v variatsionnykh zadachakh, GNTI, M., 1930 | Zbl
[9] K. Borsuk, “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl
[10] A. H. Stone, J. W. Tukey, “Generalized ‘sandwich’ theorems”, Duke Math. J., 9:2 (1942), 356–359 | DOI | MR | Zbl
[11] H. Steinhaus, “Sur la division des ensembles de l'espace par les plans et des ensembles plans par les cercles”, Fund. Math., 33 (1945), 245–263 | MR | Zbl
[12] J. Kahn, G. Kalai, “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc. (N. S.), 29:1 (1993), 60–62 | DOI | MR | Zbl
[13] B. H. Neumann, “On an invariant of plane regions and mass distributions”, J. London Math. Soc., 20:4 (1945), 226–237 | DOI | MR | Zbl
[14] R. Rado, “A theorem on general measure”, J. London Math. Soc., 21:4 (1946), 291–300 | DOI | MR | Zbl
[15] L. G. Shnirelman, “O nekotorykh geometricheskikh svoistvakh zamknutykh krivykh”, UMN, 1944, no. 10, 34–44 | MR | Zbl
[16] S. Kakutani, “A proof that there exists a circumscribing cube around any bounded closed convex set in $\mathbb R^3$”, Ann. of Math. (2), 43:4 (1942), 739–741 | DOI | MR | Zbl
[17] R. E. R. van Kampen, “Komplexe in euklidischen Räumen”, Abh. Math. Sem. Univ. Hamburg, 9 (1932), 72–78 | Zbl
[18] A. Flores, “Über $n$-dimensionale Komplexe, die im $R_{2n+1}$ absolut selbstverschlungen sind”, Ergeb. Math. Kolloq., 6 (1935), 4–7 | Zbl
[19] M. A. Krasnoselskii, “O spetsialnykh pokrytiyakh konechnomernoi sfery”, Dokl. AN SSSR, 103 (1955), 961–964 | MR | Zbl
[20] Chung-Tao Yang, “Continuous functions from spheres to Euclidean spaces”, Ann. of Math. (2), 62:2 (1955), 284–292 | DOI | MR | Zbl
[21] Chung-Tao Yang, “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson. II”, Ann. of Math. (2), 62:2 (1955), 271–283 | DOI | MR | Zbl
[22] A. S. Shvarts, “Rod rassloënnogo prostranstva”, Tr. MMO, 10, 1961, 217–272 ; 11, 1962, 99–126 ; A. S. Schwarz, “The genus of a fibre space”, Amer. Math. Soc. Transl., 55 (1966), 49–140 | Zbl
[23] P. E. Conner, E. E. Floyd, Differentiable periodic maps, Ergeb. Math. Grenzgeb., N. F., 33, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1964 | MR | Zbl | Zbl
[24] A. Yu. Volovikov, “On a topological generalization of the Tverberg theorem”, Math. Notes, 59:3 (1996), 324–326 | DOI | MR | Zbl
[25] Wu-yi Hsiang, Cohomology theory of topological transformation groups, Ergeb. Math. Grenzgeb., 85, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl
[26] A. Yu. Volovikov, “A theorem of Bourgin–Yang type for $\mathbb{Z}_p^n$-action”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 361–387 | DOI | MR | Zbl | Zbl
[27] A. Yu. Volovikov, E. V. Shchepin, “Antipodes and embeddings”, Sb. Math., 196:1 (2005), 1–28 | DOI | MR | Zbl | Zbl
[28] A. Yu. Volovikov, “Coincidence points of functions from $\mathbb Z_p^k$-spaces to $CW$-complexes”, Russian Math. Surveys, 57:1 (2002), 170–172 | DOI | MR | Zbl
[29] T. Bartsch, Topological methods for variational problems with symmetries, Lecture Notes in Math., 1560, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl
[30] G. Carlsson, “Equivariant stable homotopy and Segal's Burnside ring conjecture”, Ann. of Math. (2), 120:2 (1984), 189–224 | DOI | MR | Zbl
[31] E. Fadell, S. Husseini, “An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems”, Ergodic Theory Dynam. Systems, 8 (1988), 73–85 | MR | Zbl
[32] J. McCleary, A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[33] R. N. Karasev, “Periodic billiard trajectories in smooth convex bodies”, Geom. Funct. Anal. (to appear)
[34] K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer, New York–Berlin, 1982 | MR | MR | Zbl | Zbl
[35] A. Yu. Volovikov, “Coincidence points of maps of $\mathbb Z_p^n$-spaces”, Izv. Math., 69:5 (2005), 913–962 | DOI | MR | Zbl
[36] B. Knaster, “Problem 4”, Colloq. Math., 30 (1947), 30–31
[37] B. S. Kashin, S. J. Szarek, “The Knaster problem and the geometry of high-dimensional cubes”, C. R. Math. Acad. Sci. Paris, 336:11 (2003), 931–936 | DOI | MR | Zbl
[38] A. Hinrichs, Ch. Richter, “The Knaster problem: more counterexamples”, Israel J. Math., 145:1 (2005), 311–324 | DOI | MR | Zbl
[39] H. Yamabe, Z. Yujobô, “On the continuous function defined on a sphere”, Osaka Math. J., 2:1 (1950), 19–22 | MR | Zbl
[40] E. E. Floyd, “Real-valued mappings of spheres”, Proc. Amer. Math. Soc., 6:6 (1955), 957–959 | DOI | MR | Zbl
[41] V. V. Makeev, “The Knaster problem and almost spherical sections”, Math. USSR-Sb., 66:2 (1990), 431–438 | DOI | MR | Zbl
[42] A. Yu. Volovikov, “On a property of functions on the sphere”, Math. Notes, 70:5–6 (2001), 616–627 | DOI | MR | Zbl
[43] H. Hopf, “Eine Verallgemeinerung bekannter Abbildungs- und Überdeckungssätze”, Port. Math., 4 (1944), 129–139 | MR | Zbl
[44] V. V. Makeev, “O nekotorykh svoistvakh nepreryvnykh otobrazhenii sfer i zadachakh kombinatornoi geometrii”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalinin. gos. un-t, Kalinin, 1986, 75–85 | MR | Zbl
[45] I. K. Babenko, S. A. Bogatyi, “Mapping a sphere into Euclidean space”, Math. Notes, 46:3 (1989), 683–686 | DOI | MR | Zbl
[46] W. Chen, “Counterexamples to Knaster's conjecture”, Topology, 37:2 (1998), 401–405 | DOI | MR | Zbl
[47] A. Yu. Volovikov, “On the index of $G$-spaces”, Sb. Math., 191:9 (2000), 1259–1277 | DOI | MR | Zbl
[48] M. Kneser, “Aufgabe 360”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 58:2 (1955), 27
[49] L. Lovász, “Kneser's conjecture, chromatic number and homotopy”, J. Combin. Theory Ser. A, 25:3 (1978), 319–324 | DOI | MR | Zbl
[50] I. Bárány, “A short proof of Kneser's conjecture”, J. Combin. Theory Ser. A, 25:3 (1978), 325–326 | DOI | MR | Zbl
[51] V. L. Dolnikov, “O transversalyakh semeistv vypuklykh mnozhestv”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslavl, 1981, 30–36 | MR | Zbl
[52] N. Alon, P. Frankl, L. Lovász, “The chromatic number of Kneser hypergraphs”, Trans. Amer. Math. Soc., 298:1 (1986), 359–370 | DOI | MR | Zbl
[53] D. Kozlov, Combinatorial algeraic topology, Algorithms Comput. Math., 21, Springer, Berlin, 2008 | DOI | MR | Zbl
[54] I. Kříž, “Equivariant cohomology and lower bounds for chromatic numbers”, Trans. Amer. Math. Soc., 333:2 (1992), 567–577 | DOI | MR | Zbl
[55] I. Kříž, “A correction to ‘Equivariant cohomology and lower bounds for chromatic numbers’”, Trans. Amer. Math. Soc., 352:4 (2000), 1951–1952 | DOI | MR
[56] G. M. Ziegler, “Generalized Kneser coloring theorems with combinatorial proofs”, Invent. Math., 147:3 (2002), 671–691 | DOI | MR | Zbl
[57] A. Yu. Volovikov, “The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs”, J. Math. Sci. (N. Y.), 144:5 (2007), 4387–4397 | DOI | MR
[58] H. Tverberg, “A generalization of Radon's theorem”, J. London Math. Soc., 41:1 (1966), 123–128 | DOI | MR | Zbl
[59] I. Bárány, “A generalization of Carathéodory's theorem”, Discrete Math., 40:2–4 (1982), 141–152 | DOI | MR | Zbl
[60] I. Bárány, D. G. Larman, “A colored version of Tverberg's theorem”, J. London Math. Soc., 45:2 (1992), 314–320 | DOI | MR | Zbl
[61] B. Eaves, “Homotopies for computation of fixed points”, Math. Program., 3:1 (1972), 1–22 | DOI | MR | Zbl
[62] R. B. Kellogg, T. Li, J. Yorke, “Constructive proof of the Brouwer fixed-point theorem and computational results”, SIAM J. Numer. Anal., 13:4 (1976), 473–483 | DOI | MR | Zbl
[63] I. Bárány, S. B. Shlosman, S. Szücs, “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc. (2), 23:1 (1981), 158–164 | DOI | MR | Zbl
[64] A. Yu. Volovikov, “On the van Kampen–Flores theorem”, Math. Notes, 59:5 (1996), 477–481 | DOI | MR | Zbl
[65] K. S. Sarkaria, “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl
[66] R. T. Živaljević, S. T. Vrećica, “The colored Tverberg's problem and complexes of injective functions”, J. Combin. Theory Ser. A, 61:2 (1992), 309–318 | DOI | MR | Zbl
[67] R. T. Živaljević, S. T. Vrećica, “New cases of the colored Tverberg theorem”, Jerusalem combinatorics (1993), Contemp. Math., 178, eds. H. Barcelo, G. Kalai, Amer. Math. Soc., Providence, RI, 1994, 325–334 | MR | Zbl
[68] R. N. Karasëv, “Dvoistvennye teoremy o tsentralnoi tochke i ikh obobscheniya”, Matem. sb., 199:10 (2008), 41–62
[69] H. Guggenheimer, “Finite sets on curves and surfaces”, Israel J. Math., 3:2 (1965), 104–112 | DOI | MR | Zbl
[70] R. P. Jerrard, “Inscribed squares in plane curves”, Trans. Amer. Math. Soc., 98:2 (1961), 234–241 | DOI | MR | Zbl
[71] I. Pak, The discrete square peg problem, arXiv: 0804.0657v1
[72] M. L. Gromov, “On simplexes inscribed in a hypersurface”, Math. Notes, 5:1 (1969), 52–56 | DOI | MR | Zbl
[73] V. V. Makeev, Universalno vpisannye i opisannye mnogogranniki, Diss. ... dokt. fiz.-matem. nauk, Sankt-Peterburgskii gosudarstvennyi universitet, Sankt-Peterburg, 2003
[74] V. V. Makeev, “Affine-inscribed and affine-circumscribed polygons and polytopes”, J. Math. Sci. (New York), 91:6 (1998), 3518–3525 | DOI | MR | Zbl
[75] J. F. Pál, “Über ein elementares Variationprobleme”, Bull. de l'Acad. de Dan., 3:2 (1920), 35 pp. | Zbl
[76] H. G. Eggleston, Convexity, Cambridge Tracts in Math. and Math. Phys., 47, Cambridge Univ. Press, New York, 1958 | MR | Zbl
[77] D. Gale, “On inscribing $n$-dimensional sets in a regular $n$-simplex”, Proc. Amer. Math. Soc., 4:2 (1953), 222–225 | DOI | MR | Zbl
[78] V. V. Makeev, “Affine images of the rhombo-dodecahedron that are circumscribed about a three-dimensional convex body”, J. Math. Sci. (New York), 100:3 (2000), 2307–2309 | DOI | MR | Zbl
[79] G. Kuperberg, “Circumscribing constant-width bodies with polytopes”, New York J. Math., 5 (1999), 91–100 | MR | Zbl
[80] R. N. Karasëv, “Vpisyvanie pravilnogo krosspolitopa”, Matem. zametki (to appear)
[81] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927 | Zbl
[82] N. H. Kuiper, “Double normals of convex bodies”, Israel J. Math., 2:2 (1964), 71–80 | DOI | MR | Zbl
[83] I. K. Babenko, “Periodic trajectories in three-dimensional Birkhoff billiards”, Math. USSR-Sb., 71:1 (1992), 1–13 | DOI | MR | Zbl | Zbl
[84] M. Farber, S. Tabachnikov, “Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards”, Topology, 41:3 (2002), 553–589 | DOI | MR | Zbl
[85] M. Farber, “Topology of billiard problems. II”, Duke Math. J., 115:3 (2002), 587–621 | DOI | MR | Zbl
[86] B. Grünbaum, “Partitions of mass-distributions and of convex bodies by hyperplanes”, Pacific J. Math., 10 (1960), 1257–1261 | MR | Zbl
[87] E. A. Ramos, “Equipartition of mass distributions by hyperplanes”, Discrete Comput. Geom., 15:2 (1996), 147–167 | DOI | MR | Zbl
[88] H. Hadwiger, “Simultane Vierteilung zweier Körper”, Arch. Math. (Basel), 17:3 (1966), 274–278 | DOI | MR | Zbl
[89] D. Avis, “Non-partitionable point sets”, Inform. Process. Lett., 19:3 (1984), 125–129 | DOI | MR | Zbl
[90] P. Mani-Levitska, S. Vrećica, R. Živaljević, “Topology and combinatorics of partitions of masses by hyperplanes”, Adv. Math., 207:1 (2006), 266–296 | DOI | MR | Zbl
[91] V. V. Makeev, “Inscribed and circumscribed polyhedra of a convex body”, Math. Notes, 55:4 (1994), 423–425 | DOI | MR | Zbl
[92] V. V. Makeev, “Applications of topology to some problems in combinatorial geometry”, Amer. Math. Soc. Transl. Ser. 2, 174, Amer. Math. Soc., Providence, RI, 1996, 223–228 | MR | Zbl
[93] S. T. Vrećica, R. T. Živaljević, “The ham sandwich theorem revisited”, Israel J. Math., 78:1 (1992), 21–32 | DOI | MR | Zbl
[94] S. T. Vrećica, R. T. Živaljević, “Conical equipartitions of mass distributions”, Discrete Comput. Geom., 25:3 (2001), 335–350 | DOI | MR | Zbl
[95] N. Alon, “Splitting necklaces”, Adv. Math., 63:3 (1987), 247–253 | DOI | MR | Zbl
[96] A. Vućić, R. T. Živaljević, “Note on a conjecture of Sierksma”, Discrete Comput. Geom., 9:4 (1993), 339–349 | DOI | MR | Zbl
[97] M. de Longueville, R. T. Živaljević, “Splitting multidimensional necklaces”, Adv. Math., 218:3 (2008), 926–939 | DOI | MR | Zbl
[98] V. V. Makeev, “Six-partite partitions of a three-dimensional space”, Vestnik Leningrad Univ. Math., 21:2 (1988), 40–45 | MR | Zbl
[99] I. Bárány, A. Hubard, J. Jerónimo, “Slicing convex sets and measures by a hyperplane”, Discrete Comput. Geom., 39:1–3 (2008), 67–75 | DOI | MR | Zbl
[100] R. N. Karasëv, “Teoremy tipa Borsuka–Ulama dlya ploskostei i ploskie transversali semeistv vypuklykh kompaktov”, Matem. sb. (to appear)
[101] R. N. Karasev, “Partitions of a polytope and mappings of a point set to facets”, Discrete Comput. Geom., 34:1 (2005), 25–45 | DOI | MR | Zbl
[102] J. Eckhoff, “Helly, Radon, and Carathéodory type theorems”, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, 389–448 | MR | Zbl
[103] J. Leray, “Sur la forme des espaces topologique et sur les points fixes des représentations”, J. Math. Pures Appl. (9), 24:9 (1945), 95–167 | MR | Zbl
[104] G. Wegner, “$d$-collapsing and nerves of families of convex sets”, Arch. Math. (Basel), 26:1 (1975), 317–321 | DOI | MR | Zbl
[105] G. Wegner, Eigenschaften der Nerven homologisch-einfacher Familien im $\mathbb R^n$, Ph. D. Thesis, University of Göttingen, 1967
[106] M. Katchalski, A. Liu, “A problem of geometry in $\mathbb R^n$”, Proc. Amer. Math. Soc., 75:2 (1979), 284–288 | DOI | MR | Zbl
[107] H. Hadwiger, H. Debrunner, “Über eine Variante zum Hellyschen Satz”, Arch. Math., 8:4 (1957), 309–313 | DOI | MR | Zbl
[108] N. Alon, D. J. Kleitman, “Piercing convex sets and the Hadwiger–Debrunner $(p,q)$-problem”, Adv. Math., 96:1 (1992), 103–112 | DOI | MR | Zbl
[109] N. Alon, G. Kalai, J. Matoušek, R. Meshulam, “Transversal numbers for hypergraphs arising in geometry”, Adv. in Appl. Math., 29:1 (2002), 79–101 | DOI | MR | Zbl
[110] G. Kalai, R. Meshulam, “A topological colorful Helly theorem”, Adv. Math., 191:2 (2005), 305–311 | DOI | MR | Zbl
[111] R. B. Bapat, “A constructive proof of a permutation-based generalization of Sperner's lemma”, Math. Program., 44:1–3 (1989), 113–120 | DOI | MR | Zbl
[112] R. N. Karasëv, “Raskrashennaya versiya lemmy Knastera–Kuratovskogo–Mazurkevicha”, Modelirovanie i analiz informatsionnykh sistem, 13:2 (2006), 66–70
[113] G. Tardos, “Transversals of 2-intervals, a topological approach”, Combinatorica, 15:1 (1995), 123–134 | DOI | MR | Zbl
[114] G. Tardos, “Trasversals of $d$-intervals – comparing three approaches”, European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math., 169, Birkhäuser, Basel, 1998, 234–243 | MR | Zbl
[115] H. Hadwiger, “Über Eibereiche mit gemeinsamer Treffgeraden”, Port. Math., 16 (1957), 23–29 | MR | Zbl
[116] M. Katchalski, T. Lewis, “Cutting families of convex sets”, Proc. Amer. Math. Soc., 79:3 (1980), 457–461 | DOI | MR | Zbl
[117] H. Tverberg, “Proof of Grünbaum's conjecture on common transversals for translates”, Discrete Comput. Geom., 4:3 (1989), 191–203 | DOI | MR | Zbl
[118] A. Holmsen, M. Katchalski, T. Lewis, “A Helly-type theorem for line transversals to disjoint unit balls”, Discrete Comput. Geom., 29:4 (2003), 595–602 | DOI | MR | Zbl
[119] O. Cheong, X. Goaoc, A. Holmsen, S. Petitjean, “Helly-type theorems for line transversals to disjoint unit balls”, Discrete Comput. Geom., 39:1–3 (2008), 194–212 | DOI | MR | Zbl
[120] A. Holmsen, J. Matoušek, “No Helly theorem for stabbing translates by lines in $\mathbb R^3$”, Discrete Comput. Geom., 31:3 (2004), 405–410 | DOI | MR | Zbl
[121] B. Aronov, J. E. Goodman, R. Pollack, R. Wenger, “On the Helly number for hyperplane transversals to unit balls”, Discrete Comput. Geom., 24:2–3 (2000), 171–176 | DOI | MR | Zbl
[122] J. E. Goodman, R. Pollack, “Hadwiger's transversal theorem in higher dimensions”, J. Amer. Math. Soc., 1:2 (1988), 301–309 | DOI | MR | Zbl
[123] A. Holmsen, “The Katchalski–Lewis transversal problem in $\mathbb R^n$”, Discrete Comput. Geom., 37:3 (2007), 341–349 | DOI | MR | Zbl
[124] A. Horn, “Some generalization of Helly's theorem on convex sets”, Bull. Amer. Math. Soc., 55 (1949), 923–929 | DOI | MR | Zbl
[125] V. Klee, “On certain intersection properties of convex sets”, Canad. J. Math., 3 (1951), 272–275 | MR | Zbl
[126] V. L. Dol'nikov, “Generalized transversals of families of sets in $\mathbb R^n$ and the connections between the Helly theorem and the Borsuk theorem”, Soviet Math. Dokl., 36:3 (1988), 519–522 | MR | Zbl
[127] R. T. Živaljević, “The Tverberg–Vrećica problem and the combinatorial geometry on vector bundles”, Israel J. Math., 111:1 (1999), 53–76 | DOI | MR | Zbl
[128] R. N. Karasev, “Tverberg's transversal conjecture and analogues of nonembeddability theorems for transversals”, Discrete Comput. Geom., 38:3 (2007), 513–525 | DOI | MR | Zbl
[129] H. L. Hiller, “On the cohomology of real Grassmanians”, Trans. Amer. Math. Soc., 257:2 (1980), 521–533 | DOI | MR | Zbl
[130] H. L. Hiller, “On the height of the first Stiefel–Whitney class”, Proc. Amer. Math. Soc., 79:3 (1980), 495–498 | DOI | MR | Zbl
[131] M. L. Gromov, “A geometrical conjecture of Banach”, Math. USSR-Izv., 1:5 (1967), 1055–1064 | DOI | MR | Zbl | Zbl
[132] E. Makai, S. Vrećica, R. Živaljević, “Plane sections of convex bodies of maximal volume”, Discrete Comput. Geom., 25:1 (2001), 33–49 | DOI | MR | Zbl
[133] R. T. Živaljević, S. T. Vrećica, “An extension of the ham sandwich theorem”, Bull. London Math. Soc., 22:2 (1990), 183–186 | DOI | MR | Zbl
[134] V. L. Dolnikov, “O razbienii sistemy mer podprostranstvom mnogochlenov”, Konstruirovanie algoritmov i reshenie zadach matematicheskoi fiziki, Doklady 8-go Vsesoyuznogo seminara “Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov resheniya zadach matematicheskoi fiziki” (Krasnovidovo, 7–11 oktyabrya 1990), IPM im. M. V. Keldysha, M., 1991, 80–85
[135] V. L. Dol'nikov, “A generalization of the ham sandwich theorem”, Math. Notes, 52:2 (1992), 771–779 | DOI | MR | Zbl
[136] H. Tverberg, S. Vrećica, “On generalizations of Radon's theorem and the ham sandwich theorem”, European J. Combin., 14:3 (1993), 259–264 | DOI | MR | Zbl
[137] S. T. Vrećica, “Tverberg's conjecture”, Discrete Comput. Geom., 29:4 (2003), 505–510 | DOI | MR | Zbl