Topological methods in combinatorial geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1031-1078
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is devoted to some results in the area of combinatorial and convex geometry, from classical theorems up to the latest contemporary results, mainly those results whose proofs make essential use of the methods of algebraic topology. Various generalizations of the Borsuk–Ulam theorem for a $(Z_p)^k$-action are explained in detail, along with applications to Knaster's problem about levels of a function on a sphere, and applications are discussed to the Lyusternik–Shnirel'man theory for estimating the number of critical points of a smooth function. An overview is given of the topological methods for estimating the chromatic number of graphs and hypergraphs, in theorems of Tverberg and van Kampen–Flores type. The author's results on the ‘dual’ analogues of the central point theorem and Tverberg's theorem are described. Results are considered on the existence of inscribed and circumscribed polytopes of special form for convex bodies and on the existence of billiard trajectories in a convex body. Results on partition of measures by hyperplanes and other partitions of Euclidean space are presented. For theorems of Helly type a brief overview is given of topological approaches connected with the nerve of a family of convex sets in Euclidean space. Also surveyed are theorems of Helly type for common flat transversals, and results using the topology of the Grassmann manifold and of the canonical vector bundle over it are considered in detail.
@article{RM_2008_63_6_a4,
     author = {R. N. Karasev},
     title = {Topological methods in combinatorial geometry},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1031--1078},
     year = {2008},
     volume = {63},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_6_a4/}
}
TY  - JOUR
AU  - R. N. Karasev
TI  - Topological methods in combinatorial geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 1031
EP  - 1078
VL  - 63
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_6_a4/
LA  - en
ID  - RM_2008_63_6_a4
ER  - 
%0 Journal Article
%A R. N. Karasev
%T Topological methods in combinatorial geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 1031-1078
%V 63
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2008_63_6_a4/
%G en
%F RM_2008_63_6_a4
R. N. Karasev. Topological methods in combinatorial geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1031-1078. http://geodesic.mathdoc.fr/item/RM_2008_63_6_a4/

[1] L. E. J. Brouwer, “Über Abbildung von Mannigfaltigkeiten”, Math. Ann., 71:1 (1911), 97–115 | DOI | MR | Zbl

[2] C. Carathéodory, “Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen”, Rend. Circ. Mat. Palermo, 32 (1911), 193–217 | DOI | Zbl

[3] J. Radon, “Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten”, Math. Ann., 83:1–2 (1921), 113–115 | DOI | MR | Zbl

[4] E. Helly, “Über Mengen konvexer Körper mit gemeinschaftlichen Punkten”, Jahresber. Deutsch. Math.-Verein., 32 (1923), 175–176 | Zbl

[5] E. Sperner, “Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes”, Abh. Math. Sem. Univ. Hamburg, 6:1 (1928), 265–272 | DOI | Zbl

[6] B. Knaster, C. Kuratowski, S. Mazurkiewicz, “Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe”, Fund. Math., 14 (1929), 132–137 | Zbl

[7] A. W. Tucker, “Some topological properties of disk and sphere”, Proceedings of the First Canadian Mathematical Congress (Montreal, 1945), University of Toronto Press, Toronto, 1946, 285–309 | MR | Zbl

[8] L. A. Lyusternik, L. G. Shnirelman, Topologicheskie metody v variatsionnykh zadachakh, GNTI, M., 1930 | Zbl

[9] K. Borsuk, “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl

[10] A. H. Stone, J. W. Tukey, “Generalized ‘sandwich’ theorems”, Duke Math. J., 9:2 (1942), 356–359 | DOI | MR | Zbl

[11] H. Steinhaus, “Sur la division des ensembles de l'espace par les plans et des ensembles plans par les cercles”, Fund. Math., 33 (1945), 245–263 | MR | Zbl

[12] J. Kahn, G. Kalai, “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc. (N. S.), 29:1 (1993), 60–62 | DOI | MR | Zbl

[13] B. H. Neumann, “On an invariant of plane regions and mass distributions”, J. London Math. Soc., 20:4 (1945), 226–237 | DOI | MR | Zbl

[14] R. Rado, “A theorem on general measure”, J. London Math. Soc., 21:4 (1946), 291–300 | DOI | MR | Zbl

[15] L. G. Shnirelman, “O nekotorykh geometricheskikh svoistvakh zamknutykh krivykh”, UMN, 1944, no. 10, 34–44 | MR | Zbl

[16] S. Kakutani, “A proof that there exists a circumscribing cube around any bounded closed convex set in $\mathbb R^3$”, Ann. of Math. (2), 43:4 (1942), 739–741 | DOI | MR | Zbl

[17] R. E. R. van Kampen, “Komplexe in euklidischen Räumen”, Abh. Math. Sem. Univ. Hamburg, 9 (1932), 72–78 | Zbl

[18] A. Flores, “Über $n$-dimensionale Komplexe, die im $R_{2n+1}$ absolut selbstverschlungen sind”, Ergeb. Math. Kolloq., 6 (1935), 4–7 | Zbl

[19] M. A. Krasnoselskii, “O spetsialnykh pokrytiyakh konechnomernoi sfery”, Dokl. AN SSSR, 103 (1955), 961–964 | MR | Zbl

[20] Chung-Tao Yang, “Continuous functions from spheres to Euclidean spaces”, Ann. of Math. (2), 62:2 (1955), 284–292 | DOI | MR | Zbl

[21] Chung-Tao Yang, “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson. II”, Ann. of Math. (2), 62:2 (1955), 271–283 | DOI | MR | Zbl

[22] A. S. Shvarts, “Rod rassloënnogo prostranstva”, Tr. MMO, 10, 1961, 217–272 ; 11, 1962, 99–126 ; A. S. Schwarz, “The genus of a fibre space”, Amer. Math. Soc. Transl., 55 (1966), 49–140 | Zbl

[23] P. E. Conner, E. E. Floyd, Differentiable periodic maps, Ergeb. Math. Grenzgeb., N. F., 33, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1964 | MR | Zbl | Zbl

[24] A. Yu. Volovikov, “On a topological generalization of the Tverberg theorem”, Math. Notes, 59:3 (1996), 324–326 | DOI | MR | Zbl

[25] Wu-yi Hsiang, Cohomology theory of topological transformation groups, Ergeb. Math. Grenzgeb., 85, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl

[26] A. Yu. Volovikov, “A theorem of Bourgin–Yang type for $\mathbb{Z}_p^n$-action”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 361–387 | DOI | MR | Zbl | Zbl

[27] A. Yu. Volovikov, E. V. Shchepin, “Antipodes and embeddings”, Sb. Math., 196:1 (2005), 1–28 | DOI | MR | Zbl | Zbl

[28] A. Yu. Volovikov, “Coincidence points of functions from $\mathbb Z_p^k$-spaces to $CW$-complexes”, Russian Math. Surveys, 57:1 (2002), 170–172 | DOI | MR | Zbl

[29] T. Bartsch, Topological methods for variational problems with symmetries, Lecture Notes in Math., 1560, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl

[30] G. Carlsson, “Equivariant stable homotopy and Segal's Burnside ring conjecture”, Ann. of Math. (2), 120:2 (1984), 189–224 | DOI | MR | Zbl

[31] E. Fadell, S. Husseini, “An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems”, Ergodic Theory Dynam. Systems, 8 (1988), 73–85 | MR | Zbl

[32] J. McCleary, A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[33] R. N. Karasev, “Periodic billiard trajectories in smooth convex bodies”, Geom. Funct. Anal. (to appear)

[34] K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer, New York–Berlin, 1982 | MR | MR | Zbl | Zbl

[35] A. Yu. Volovikov, “Coincidence points of maps of $\mathbb Z_p^n$-spaces”, Izv. Math., 69:5 (2005), 913–962 | DOI | MR | Zbl

[36] B. Knaster, “Problem 4”, Colloq. Math., 30 (1947), 30–31

[37] B. S. Kashin, S. J. Szarek, “The Knaster problem and the geometry of high-dimensional cubes”, C. R. Math. Acad. Sci. Paris, 336:11 (2003), 931–936 | DOI | MR | Zbl

[38] A. Hinrichs, Ch. Richter, “The Knaster problem: more counterexamples”, Israel J. Math., 145:1 (2005), 311–324 | DOI | MR | Zbl

[39] H. Yamabe, Z. Yujobô, “On the continuous function defined on a sphere”, Osaka Math. J., 2:1 (1950), 19–22 | MR | Zbl

[40] E. E. Floyd, “Real-valued mappings of spheres”, Proc. Amer. Math. Soc., 6:6 (1955), 957–959 | DOI | MR | Zbl

[41] V. V. Makeev, “The Knaster problem and almost spherical sections”, Math. USSR-Sb., 66:2 (1990), 431–438 | DOI | MR | Zbl

[42] A. Yu. Volovikov, “On a property of functions on the sphere”, Math. Notes, 70:5–6 (2001), 616–627 | DOI | MR | Zbl

[43] H. Hopf, “Eine Verallgemeinerung bekannter Abbildungs- und Überdeckungssätze”, Port. Math., 4 (1944), 129–139 | MR | Zbl

[44] V. V. Makeev, “O nekotorykh svoistvakh nepreryvnykh otobrazhenii sfer i zadachakh kombinatornoi geometrii”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalinin. gos. un-t, Kalinin, 1986, 75–85 | MR | Zbl

[45] I. K. Babenko, S. A. Bogatyi, “Mapping a sphere into Euclidean space”, Math. Notes, 46:3 (1989), 683–686 | DOI | MR | Zbl

[46] W. Chen, “Counterexamples to Knaster's conjecture”, Topology, 37:2 (1998), 401–405 | DOI | MR | Zbl

[47] A. Yu. Volovikov, “On the index of $G$-spaces”, Sb. Math., 191:9 (2000), 1259–1277 | DOI | MR | Zbl

[48] M. Kneser, “Aufgabe 360”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 58:2 (1955), 27

[49] L. Lovász, “Kneser's conjecture, chromatic number and homotopy”, J. Combin. Theory Ser. A, 25:3 (1978), 319–324 | DOI | MR | Zbl

[50] I. Bárány, “A short proof of Kneser's conjecture”, J. Combin. Theory Ser. A, 25:3 (1978), 325–326 | DOI | MR | Zbl

[51] V. L. Dolnikov, “O transversalyakh semeistv vypuklykh mnozhestv”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslavl, 1981, 30–36 | MR | Zbl

[52] N. Alon, P. Frankl, L. Lovász, “The chromatic number of Kneser hypergraphs”, Trans. Amer. Math. Soc., 298:1 (1986), 359–370 | DOI | MR | Zbl

[53] D. Kozlov, Combinatorial algeraic topology, Algorithms Comput. Math., 21, Springer, Berlin, 2008 | DOI | MR | Zbl

[54] I. Kříž, “Equivariant cohomology and lower bounds for chromatic numbers”, Trans. Amer. Math. Soc., 333:2 (1992), 567–577 | DOI | MR | Zbl

[55] I. Kříž, “A correction to ‘Equivariant cohomology and lower bounds for chromatic numbers’”, Trans. Amer. Math. Soc., 352:4 (2000), 1951–1952 | DOI | MR

[56] G. M. Ziegler, “Generalized Kneser coloring theorems with combinatorial proofs”, Invent. Math., 147:3 (2002), 671–691 | DOI | MR | Zbl

[57] A. Yu. Volovikov, “The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs”, J. Math. Sci. (N. Y.), 144:5 (2007), 4387–4397 | DOI | MR

[58] H. Tverberg, “A generalization of Radon's theorem”, J. London Math. Soc., 41:1 (1966), 123–128 | DOI | MR | Zbl

[59] I. Bárány, “A generalization of Carathéodory's theorem”, Discrete Math., 40:2–4 (1982), 141–152 | DOI | MR | Zbl

[60] I. Bárány, D. G. Larman, “A colored version of Tverberg's theorem”, J. London Math. Soc., 45:2 (1992), 314–320 | DOI | MR | Zbl

[61] B. Eaves, “Homotopies for computation of fixed points”, Math. Program., 3:1 (1972), 1–22 | DOI | MR | Zbl

[62] R. B. Kellogg, T. Li, J. Yorke, “Constructive proof of the Brouwer fixed-point theorem and computational results”, SIAM J. Numer. Anal., 13:4 (1976), 473–483 | DOI | MR | Zbl

[63] I. Bárány, S. B. Shlosman, S. Szücs, “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc. (2), 23:1 (1981), 158–164 | DOI | MR | Zbl

[64] A. Yu. Volovikov, “On the van Kampen–Flores theorem”, Math. Notes, 59:5 (1996), 477–481 | DOI | MR | Zbl

[65] K. S. Sarkaria, “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[66] R. T. Živaljević, S. T. Vrećica, “The colored Tverberg's problem and complexes of injective functions”, J. Combin. Theory Ser. A, 61:2 (1992), 309–318 | DOI | MR | Zbl

[67] R. T. Živaljević, S. T. Vrećica, “New cases of the colored Tverberg theorem”, Jerusalem combinatorics (1993), Contemp. Math., 178, eds. H. Barcelo, G. Kalai, Amer. Math. Soc., Providence, RI, 1994, 325–334 | MR | Zbl

[68] R. N. Karasëv, “Dvoistvennye teoremy o tsentralnoi tochke i ikh obobscheniya”, Matem. sb., 199:10 (2008), 41–62

[69] H. Guggenheimer, “Finite sets on curves and surfaces”, Israel J. Math., 3:2 (1965), 104–112 | DOI | MR | Zbl

[70] R. P. Jerrard, “Inscribed squares in plane curves”, Trans. Amer. Math. Soc., 98:2 (1961), 234–241 | DOI | MR | Zbl

[71] I. Pak, The discrete square peg problem, arXiv: 0804.0657v1

[72] M. L. Gromov, “On simplexes inscribed in a hypersurface”, Math. Notes, 5:1 (1969), 52–56 | DOI | MR | Zbl

[73] V. V. Makeev, Universalno vpisannye i opisannye mnogogranniki, Diss. ... dokt. fiz.-matem. nauk, Sankt-Peterburgskii gosudarstvennyi universitet, Sankt-Peterburg, 2003

[74] V. V. Makeev, “Affine-inscribed and affine-circumscribed polygons and polytopes”, J. Math. Sci. (New York), 91:6 (1998), 3518–3525 | DOI | MR | Zbl

[75] J. F. Pál, “Über ein elementares Variationprobleme”, Bull. de l'Acad. de Dan., 3:2 (1920), 35 pp. | Zbl

[76] H. G. Eggleston, Convexity, Cambridge Tracts in Math. and Math. Phys., 47, Cambridge Univ. Press, New York, 1958 | MR | Zbl

[77] D. Gale, “On inscribing $n$-dimensional sets in a regular $n$-simplex”, Proc. Amer. Math. Soc., 4:2 (1953), 222–225 | DOI | MR | Zbl

[78] V. V. Makeev, “Affine images of the rhombo-dodecahedron that are circumscribed about a three-dimensional convex body”, J. Math. Sci. (New York), 100:3 (2000), 2307–2309 | DOI | MR | Zbl

[79] G. Kuperberg, “Circumscribing constant-width bodies with polytopes”, New York J. Math., 5 (1999), 91–100 | MR | Zbl

[80] R. N. Karasëv, “Vpisyvanie pravilnogo krosspolitopa”, Matem. zametki (to appear)

[81] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927 | Zbl

[82] N. H. Kuiper, “Double normals of convex bodies”, Israel J. Math., 2:2 (1964), 71–80 | DOI | MR | Zbl

[83] I. K. Babenko, “Periodic trajectories in three-dimensional Birkhoff billiards”, Math. USSR-Sb., 71:1 (1992), 1–13 | DOI | MR | Zbl | Zbl

[84] M. Farber, S. Tabachnikov, “Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards”, Topology, 41:3 (2002), 553–589 | DOI | MR | Zbl

[85] M. Farber, “Topology of billiard problems. II”, Duke Math. J., 115:3 (2002), 587–621 | DOI | MR | Zbl

[86] B. Grünbaum, “Partitions of mass-distributions and of convex bodies by hyperplanes”, Pacific J. Math., 10 (1960), 1257–1261 | MR | Zbl

[87] E. A. Ramos, “Equipartition of mass distributions by hyperplanes”, Discrete Comput. Geom., 15:2 (1996), 147–167 | DOI | MR | Zbl

[88] H. Hadwiger, “Simultane Vierteilung zweier Körper”, Arch. Math. (Basel), 17:3 (1966), 274–278 | DOI | MR | Zbl

[89] D. Avis, “Non-partitionable point sets”, Inform. Process. Lett., 19:3 (1984), 125–129 | DOI | MR | Zbl

[90] P. Mani-Levitska, S. Vrećica, R. Živaljević, “Topology and combinatorics of partitions of masses by hyperplanes”, Adv. Math., 207:1 (2006), 266–296 | DOI | MR | Zbl

[91] V. V. Makeev, “Inscribed and circumscribed polyhedra of a convex body”, Math. Notes, 55:4 (1994), 423–425 | DOI | MR | Zbl

[92] V. V. Makeev, “Applications of topology to some problems in combinatorial geometry”, Amer. Math. Soc. Transl. Ser. 2, 174, Amer. Math. Soc., Providence, RI, 1996, 223–228 | MR | Zbl

[93] S. T. Vrećica, R. T. Živaljević, “The ham sandwich theorem revisited”, Israel J. Math., 78:1 (1992), 21–32 | DOI | MR | Zbl

[94] S. T. Vrećica, R. T. Živaljević, “Conical equipartitions of mass distributions”, Discrete Comput. Geom., 25:3 (2001), 335–350 | DOI | MR | Zbl

[95] N. Alon, “Splitting necklaces”, Adv. Math., 63:3 (1987), 247–253 | DOI | MR | Zbl

[96] A. Vućić, R. T. Živaljević, “Note on a conjecture of Sierksma”, Discrete Comput. Geom., 9:4 (1993), 339–349 | DOI | MR | Zbl

[97] M. de Longueville, R. T. Živaljević, “Splitting multidimensional necklaces”, Adv. Math., 218:3 (2008), 926–939 | DOI | MR | Zbl

[98] V. V. Makeev, “Six-partite partitions of a three-dimensional space”, Vestnik Leningrad Univ. Math., 21:2 (1988), 40–45 | MR | Zbl

[99] I. Bárány, A. Hubard, J. Jerónimo, “Slicing convex sets and measures by a hyperplane”, Discrete Comput. Geom., 39:1–3 (2008), 67–75 | DOI | MR | Zbl

[100] R. N. Karasëv, “Teoremy tipa Borsuka–Ulama dlya ploskostei i ploskie transversali semeistv vypuklykh kompaktov”, Matem. sb. (to appear)

[101] R. N. Karasev, “Partitions of a polytope and mappings of a point set to facets”, Discrete Comput. Geom., 34:1 (2005), 25–45 | DOI | MR | Zbl

[102] J. Eckhoff, “Helly, Radon, and Carathéodory type theorems”, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, 389–448 | MR | Zbl

[103] J. Leray, “Sur la forme des espaces topologique et sur les points fixes des représentations”, J. Math. Pures Appl. (9), 24:9 (1945), 95–167 | MR | Zbl

[104] G. Wegner, “$d$-collapsing and nerves of families of convex sets”, Arch. Math. (Basel), 26:1 (1975), 317–321 | DOI | MR | Zbl

[105] G. Wegner, Eigenschaften der Nerven homologisch-einfacher Familien im $\mathbb R^n$, Ph. D. Thesis, University of Göttingen, 1967

[106] M. Katchalski, A. Liu, “A problem of geometry in $\mathbb R^n$”, Proc. Amer. Math. Soc., 75:2 (1979), 284–288 | DOI | MR | Zbl

[107] H. Hadwiger, H. Debrunner, “Über eine Variante zum Hellyschen Satz”, Arch. Math., 8:4 (1957), 309–313 | DOI | MR | Zbl

[108] N. Alon, D. J. Kleitman, “Piercing convex sets and the Hadwiger–Debrunner $(p,q)$-problem”, Adv. Math., 96:1 (1992), 103–112 | DOI | MR | Zbl

[109] N. Alon, G. Kalai, J. Matoušek, R. Meshulam, “Transversal numbers for hypergraphs arising in geometry”, Adv. in Appl. Math., 29:1 (2002), 79–101 | DOI | MR | Zbl

[110] G. Kalai, R. Meshulam, “A topological colorful Helly theorem”, Adv. Math., 191:2 (2005), 305–311 | DOI | MR | Zbl

[111] R. B. Bapat, “A constructive proof of a permutation-based generalization of Sperner's lemma”, Math. Program., 44:1–3 (1989), 113–120 | DOI | MR | Zbl

[112] R. N. Karasëv, “Raskrashennaya versiya lemmy Knastera–Kuratovskogo–Mazurkevicha”, Modelirovanie i analiz informatsionnykh sistem, 13:2 (2006), 66–70

[113] G. Tardos, “Transversals of 2-intervals, a topological approach”, Combinatorica, 15:1 (1995), 123–134 | DOI | MR | Zbl

[114] G. Tardos, “Trasversals of $d$-intervals – comparing three approaches”, European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math., 169, Birkhäuser, Basel, 1998, 234–243 | MR | Zbl

[115] H. Hadwiger, “Über Eibereiche mit gemeinsamer Treffgeraden”, Port. Math., 16 (1957), 23–29 | MR | Zbl

[116] M. Katchalski, T. Lewis, “Cutting families of convex sets”, Proc. Amer. Math. Soc., 79:3 (1980), 457–461 | DOI | MR | Zbl

[117] H. Tverberg, “Proof of Grünbaum's conjecture on common transversals for translates”, Discrete Comput. Geom., 4:3 (1989), 191–203 | DOI | MR | Zbl

[118] A. Holmsen, M. Katchalski, T. Lewis, “A Helly-type theorem for line transversals to disjoint unit balls”, Discrete Comput. Geom., 29:4 (2003), 595–602 | DOI | MR | Zbl

[119] O. Cheong, X. Goaoc, A. Holmsen, S. Petitjean, “Helly-type theorems for line transversals to disjoint unit balls”, Discrete Comput. Geom., 39:1–3 (2008), 194–212 | DOI | MR | Zbl

[120] A. Holmsen, J. Matoušek, “No Helly theorem for stabbing translates by lines in $\mathbb R^3$”, Discrete Comput. Geom., 31:3 (2004), 405–410 | DOI | MR | Zbl

[121] B. Aronov, J. E. Goodman, R. Pollack, R. Wenger, “On the Helly number for hyperplane transversals to unit balls”, Discrete Comput. Geom., 24:2–3 (2000), 171–176 | DOI | MR | Zbl

[122] J. E. Goodman, R. Pollack, “Hadwiger's transversal theorem in higher dimensions”, J. Amer. Math. Soc., 1:2 (1988), 301–309 | DOI | MR | Zbl

[123] A. Holmsen, “The Katchalski–Lewis transversal problem in $\mathbb R^n$”, Discrete Comput. Geom., 37:3 (2007), 341–349 | DOI | MR | Zbl

[124] A. Horn, “Some generalization of Helly's theorem on convex sets”, Bull. Amer. Math. Soc., 55 (1949), 923–929 | DOI | MR | Zbl

[125] V. Klee, “On certain intersection properties of convex sets”, Canad. J. Math., 3 (1951), 272–275 | MR | Zbl

[126] V. L. Dol'nikov, “Generalized transversals of families of sets in $\mathbb R^n$ and the connections between the Helly theorem and the Borsuk theorem”, Soviet Math. Dokl., 36:3 (1988), 519–522 | MR | Zbl

[127] R. T. Živaljević, “The Tverberg–Vrećica problem and the combinatorial geometry on vector bundles”, Israel J. Math., 111:1 (1999), 53–76 | DOI | MR | Zbl

[128] R. N. Karasev, “Tverberg's transversal conjecture and analogues of nonembeddability theorems for transversals”, Discrete Comput. Geom., 38:3 (2007), 513–525 | DOI | MR | Zbl

[129] H. L. Hiller, “On the cohomology of real Grassmanians”, Trans. Amer. Math. Soc., 257:2 (1980), 521–533 | DOI | MR | Zbl

[130] H. L. Hiller, “On the height of the first Stiefel–Whitney class”, Proc. Amer. Math. Soc., 79:3 (1980), 495–498 | DOI | MR | Zbl

[131] M. L. Gromov, “A geometrical conjecture of Banach”, Math. USSR-Izv., 1:5 (1967), 1055–1064 | DOI | MR | Zbl | Zbl

[132] E. Makai, S. Vrećica, R. Živaljević, “Plane sections of convex bodies of maximal volume”, Discrete Comput. Geom., 25:1 (2001), 33–49 | DOI | MR | Zbl

[133] R. T. Živaljević, S. T. Vrećica, “An extension of the ham sandwich theorem”, Bull. London Math. Soc., 22:2 (1990), 183–186 | DOI | MR | Zbl

[134] V. L. Dolnikov, “O razbienii sistemy mer podprostranstvom mnogochlenov”, Konstruirovanie algoritmov i reshenie zadach matematicheskoi fiziki, Doklady 8-go Vsesoyuznogo seminara “Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov resheniya zadach matematicheskoi fiziki” (Krasnovidovo, 7–11 oktyabrya 1990), IPM im. M. V. Keldysha, M., 1991, 80–85

[135] V. L. Dol'nikov, “A generalization of the ham sandwich theorem”, Math. Notes, 52:2 (1992), 771–779 | DOI | MR | Zbl

[136] H. Tverberg, S. Vrećica, “On generalizations of Radon's theorem and the ham sandwich theorem”, European J. Combin., 14:3 (1993), 259–264 | DOI | MR | Zbl

[137] S. T. Vrećica, “Tverberg's conjecture”, Discrete Comput. Geom., 29:4 (2003), 505–510 | DOI | MR | Zbl