Limit theorem for trigonometric sums. Theory of curlicues
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1023-1029 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a discussion of the behaviour of the trigonometric sums $\sum\exp\{2\pi\alpha n^2\}$ and their limiting distribution as a function of $N$. The analysis is based upon another application of the renormalization group theory.
@article{RM_2008_63_6_a3,
     author = {Ya. G. Sinai},
     title = {Limit theorem for trigonometric sums. {Theory} of curlicues},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1023--1029},
     year = {2008},
     volume = {63},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/}
}
TY  - JOUR
AU  - Ya. G. Sinai
TI  - Limit theorem for trigonometric sums. Theory of curlicues
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 1023
EP  - 1029
VL  - 63
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/
LA  - en
ID  - RM_2008_63_6_a3
ER  - 
%0 Journal Article
%A Ya. G. Sinai
%T Limit theorem for trigonometric sums. Theory of curlicues
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 1023-1029
%V 63
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/
%G en
%F RM_2008_63_6_a3
Ya. G. Sinai. Limit theorem for trigonometric sums. Theory of curlicues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1023-1029. http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/

[1] G. H. Hardy, J. E. Littlewood, “Some problems of diophantine approximation. II: The trigonometrical series associated with the elliptic $\vartheta$-functions”, Acta Math., 37:1 (1914), 193–239 | DOI | MR | Zbl

[2] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 ; “O ravnomernom raspredelenii chisel po modulyu odin”, German Veil. Izbr. trudy. Matem. Teoret. fiz., Klassiki nauki, Nauka, M., 1984, 58–93 | DOI | MR | Zbl

[3] J. G. van der Corput, “Über Summen, die mit den elliptischen $\vartheta$-Funktionen zusammenhängen”, Math. Ann., 87:1-2 (1922), 66–77 | DOI | MR | Zbl

[4] L. J. Mordell, “The approximate functional formula for the theta function”, J. London Math. Soc., 1 (1926), 68–72 | DOI | Zbl

[5] J. R. Wilton, “The approximate functional formula for the theta function”, J. London Math. Soc., 2 (1927), 177–180 | DOI | Zbl

[6] E. A. Coutsias, N. D. Kazarinoff, “Disorder, renormalizability, theta functions and Cornu spirals”, Phys. D, 26:1–3 (1987), 295–310 | DOI | MR | Zbl

[7] E. A. Coutsias, N. D. Kazarinoff, “The approximate functional formula for the theta function and Diophantine Gauss sums”, Trans. Amer. Math. Soc., 350:2 (1998), 615–641 | DOI | MR | Zbl

[8] M. V. Berry, J. Goldberg, “Renormalisation of curlicues”, Nonlinearity, 1:1 (1988), 1–26 | DOI | MR | Zbl

[9] J. Marklof, “Limit theorems for theta sums”, Duke Math. J., 97:1 (1999), 127–153 | DOI | MR | Zbl

[10] J. Marklof, “Theta sums, Eisenstein series, and the semiclassical dynamics of a precessing spin”, Emerging applications of number theory (Minneapolis, MN, 1996), IMA Vol. Math. Appl., 109, Springer, New York, 1999, 405–450 | MR | Zbl

[11] A. Fedotov, F. Klopp, “Renormalization of exponential sums and matrix cocycles”, Séminaire: Équations aux Dérivées Partielles. 2004–2005, Exp. XVI, École Polytech., Palaiseau, 2005, 12 pp. | MR | Zbl

[12] Ya. G. Sinai, “On the distribution of the first positive sum for a sequence of independent random variables”, Theory Probab. Appl., 2:1 (1957), 122–129 | DOI | Zbl

[13] Ya. G. Sinai, C. Ulcigrai, “Renewal-type limit theorem for the Gauss map and continued fractions”, Ergodic Theory Dynam. Systems, 28:2 (2008), 643–655 | DOI | MR | Zbl

[14] F. Cellarosi, “Renewal-type limit theorem for continued fractions with even partial quotients”, Ergodic Theory Dynam. Systems (to appear); , 2008 arXiv: 0802.4459

[15] F. Schweiger, “Continued fractions with odd and even partial quotients”, Arbeitsber. Math. Inst. Univ. Salzburg, 1982, no. 4, 59–70

[16] F. Schweiger, “On the approximation by continued fractions with odd and even partial quotients”, Arbeitsber. Math. Inst. Univ. Salzburg, 1984, no. 1–2, 105–114

[17] C. Kraaikamp, A. Lopes, “The theta group and the continued fraction expansion with even partial quotients”, Geom. Dedicata, 59:3 (1996), 293–333 | DOI | MR | Zbl

[18] J. Aaronson, An introduction to infinite ergodic theory, Math. Surveys Monogr., 50, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[19] M. Campanino, S. Isola, “Infinite invariant measures for non-uniformly expanding transformations of $[0,1]$: weak law of large numbers with anomalous scaling”, Forum Math., 8:1 (1996), 71–92 | MR | Zbl