@article{RM_2008_63_6_a3,
author = {Ya. G. Sinai},
title = {Limit theorem for trigonometric sums. {Theory} of curlicues},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1023--1029},
year = {2008},
volume = {63},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/}
}
Ya. G. Sinai. Limit theorem for trigonometric sums. Theory of curlicues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1023-1029. http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/
[1] G. H. Hardy, J. E. Littlewood, “Some problems of diophantine approximation. II: The trigonometrical series associated with the elliptic $\vartheta$-functions”, Acta Math., 37:1 (1914), 193–239 | DOI | MR | Zbl
[2] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 ; “O ravnomernom raspredelenii chisel po modulyu odin”, German Veil. Izbr. trudy. Matem. Teoret. fiz., Klassiki nauki, Nauka, M., 1984, 58–93 | DOI | MR | Zbl
[3] J. G. van der Corput, “Über Summen, die mit den elliptischen $\vartheta$-Funktionen zusammenhängen”, Math. Ann., 87:1-2 (1922), 66–77 | DOI | MR | Zbl
[4] L. J. Mordell, “The approximate functional formula for the theta function”, J. London Math. Soc., 1 (1926), 68–72 | DOI | Zbl
[5] J. R. Wilton, “The approximate functional formula for the theta function”, J. London Math. Soc., 2 (1927), 177–180 | DOI | Zbl
[6] E. A. Coutsias, N. D. Kazarinoff, “Disorder, renormalizability, theta functions and Cornu spirals”, Phys. D, 26:1–3 (1987), 295–310 | DOI | MR | Zbl
[7] E. A. Coutsias, N. D. Kazarinoff, “The approximate functional formula for the theta function and Diophantine Gauss sums”, Trans. Amer. Math. Soc., 350:2 (1998), 615–641 | DOI | MR | Zbl
[8] M. V. Berry, J. Goldberg, “Renormalisation of curlicues”, Nonlinearity, 1:1 (1988), 1–26 | DOI | MR | Zbl
[9] J. Marklof, “Limit theorems for theta sums”, Duke Math. J., 97:1 (1999), 127–153 | DOI | MR | Zbl
[10] J. Marklof, “Theta sums, Eisenstein series, and the semiclassical dynamics of a precessing spin”, Emerging applications of number theory (Minneapolis, MN, 1996), IMA Vol. Math. Appl., 109, Springer, New York, 1999, 405–450 | MR | Zbl
[11] A. Fedotov, F. Klopp, “Renormalization of exponential sums and matrix cocycles”, Séminaire: Équations aux Dérivées Partielles. 2004–2005, Exp. XVI, École Polytech., Palaiseau, 2005, 12 pp. | MR | Zbl
[12] Ya. G. Sinai, “On the distribution of the first positive sum for a sequence of independent random variables”, Theory Probab. Appl., 2:1 (1957), 122–129 | DOI | Zbl
[13] Ya. G. Sinai, C. Ulcigrai, “Renewal-type limit theorem for the Gauss map and continued fractions”, Ergodic Theory Dynam. Systems, 28:2 (2008), 643–655 | DOI | MR | Zbl
[14] F. Cellarosi, “Renewal-type limit theorem for continued fractions with even partial quotients”, Ergodic Theory Dynam. Systems (to appear); , 2008 arXiv: 0802.4459
[15] F. Schweiger, “Continued fractions with odd and even partial quotients”, Arbeitsber. Math. Inst. Univ. Salzburg, 1982, no. 4, 59–70
[16] F. Schweiger, “On the approximation by continued fractions with odd and even partial quotients”, Arbeitsber. Math. Inst. Univ. Salzburg, 1984, no. 1–2, 105–114
[17] C. Kraaikamp, A. Lopes, “The theta group and the continued fraction expansion with even partial quotients”, Geom. Dedicata, 59:3 (1996), 293–333 | DOI | MR | Zbl
[18] J. Aaronson, An introduction to infinite ergodic theory, Math. Surveys Monogr., 50, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[19] M. Campanino, S. Isola, “Infinite invariant measures for non-uniformly expanding transformations of $[0,1]$: weak law of large numbers with anomalous scaling”, Forum Math., 8:1 (1996), 71–92 | MR | Zbl