Limit theorem for trigonometric sums. Theory of curlicues
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1023-1029

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a discussion of the behaviour of the trigonometric sums $\sum\exp\{2\pi\alpha n^2\}$ and their limiting distribution as a function of $N$. The analysis is based upon another application of the renormalization group theory.
@article{RM_2008_63_6_a3,
     author = {Ya. G. Sinai},
     title = {Limit theorem for trigonometric sums. {Theory} of curlicues},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1023--1029},
     publisher = {mathdoc},
     volume = {63},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/}
}
TY  - JOUR
AU  - Ya. G. Sinai
TI  - Limit theorem for trigonometric sums. Theory of curlicues
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 1023
EP  - 1029
VL  - 63
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/
LA  - en
ID  - RM_2008_63_6_a3
ER  - 
%0 Journal Article
%A Ya. G. Sinai
%T Limit theorem for trigonometric sums. Theory of curlicues
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 1023-1029
%V 63
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/
%G en
%F RM_2008_63_6_a3
Ya. G. Sinai. Limit theorem for trigonometric sums. Theory of curlicues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1023-1029. http://geodesic.mathdoc.fr/item/RM_2008_63_6_a3/