@article{RM_2008_63_6_a2,
author = {I. M. Krichever},
title = {Abelian solutions of the soliton equations {and~Riemann{\textendash}Schottky} problems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1011--1022},
year = {2008},
volume = {63},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_6_a2/}
}
I. M. Krichever. Abelian solutions of the soliton equations and Riemann–Schottky problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 1011-1022. http://geodesic.mathdoc.fr/item/RM_2008_63_6_a2/
[1] I. M. Krichever, “Integration of nonlinear equations by the methods of algebraic geometry”, Funct. Anal. Appl., 11:1 (1977), 12–26 | DOI | MR | Zbl | Zbl
[2] I. M. Krichever, “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl | Zbl
[3] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl | Zbl
[4] A. R. Its, V. B. Matveev, “Hill's operator with finitely many gaps”, Funct. Anal. Appl., 9:1 (1975), 65–66 | DOI | MR | Zbl
[5] H. P. McKean, P. van Moerbeke, “The spectrum of Hill's equation”, Invent. Math., 30:3 (1975), 217–274 | DOI | MR | Zbl
[6] P. D. Lax, “Periodic solutions of the KdV equation”, Comm. Pure Appl. Math., 28 (1975), 141–188 | MR | Zbl
[7] T. Shiota, “Characterization of Jacobian varieties in terms of soliton equations”, Invent. Math., 83:2 (1986), 333–382 | DOI | MR | Zbl
[8] I. A. Taimanov, “Secants of Abelian varieties, theta functions, and soliton equations”, Russian Math. Surveys, 52:1 (1997), 147–218 | DOI | MR | Zbl
[9] Jun-ichi Igusa, “On the irreducibility of Schottky's divisor”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:3 (1981), 531–545 | MR | Zbl
[10] F. Schottky, H. Jung, “Neue Sätze über Symmetralfunktionen und die Abel'schen Funktionen der Riemann'schen Theorie”, Sitzungsber. Akad. Berlin, 1909, 282–297 | Zbl
[11] H. M. Farkas, H. E. Rauch, “Period relations of Schottky type on Riemann surfaces”, Ann. of Math. (2), 92:3 (1970), 434–461 | DOI | MR | Zbl
[12] B. van Geemen, “Siegel modular forms vanishing on the moduli space of curves”, Invent. Math., 78:2 (1984), 329–349 | DOI | MR | Zbl
[13] R. Donagi, “Big Schottky”, Invent. Math., 89:3 (1987), 569–599 | DOI | MR | Zbl
[14] R. C. Gunning, “Some curves in Abelian varieties”, Invent. Math., 66:3 (1982), 377–389 | DOI | MR | Zbl
[15] R. C. Gunning, “Some identities for abelian integrals”, Amer. J. Math., 108:1 (1986), 39–74 | DOI | MR | Zbl
[16] J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl
[17] G. E. Welters, “On flexes of the Kummer variety (note on a theorem of R. C. Gunning)”, Indag. Math., 45:4 (1983), 501–520 | MR | Zbl
[18] G. E. Welters, “A criterion for Jacobi varieties”, Ann. of Math. (2), 120:3 (1984), 497–504 | DOI | MR | Zbl
[19] D. Mumford, “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related nonlinear equations”, Proceedings of the International Symposium on Algebraic Geometry (Kyoto, 1977), Kinokuniya Book Store, Kyoto, 1978, 115–153 | MR | Zbl
[20] E. Arbarello, C. De Concini, “On a set of equations characterizing Riemann matrices”, Ann. of Math. (2), 120:1 (1984), 119–140 | DOI | MR | Zbl
[21] E. Arbarello, C. De Concini, “Another proof of a conjecture of S. P. Novikov on periods of Abelian integrals on Riemann surfaces”, Duke Math. J., 54:1 (1987), 163–178 | DOI | MR | Zbl
[22] I. M. Krichever, “Integrable linear equations and the Riemann–Schottky problem”, Algebraic geometry and number theory, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006, 497–514 | MR | Zbl
[23] G. Marini, “A geometrical proof of Shiota's theorem on a conjecture of S. P. Novikov”, Compos. Math., 111:3 (1998), 305–322 | DOI | MR | Zbl
[24] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR | Zbl
[25] E. Arbarello, I. Krichever, G. Marini, “Characterizing Jacobians via flexes of the Kummer variety”, Math. Res. Lett., 13:1 (2006), 109–123 | MR | Zbl
[26] I. Krichever, “Characterizing Jacobians via trisecants of the Kummer variety”, Ann. of Math., 2008 (to appear); , 2006 arXiv: math/0605625
[27] I. Krichever, “A characterization of Prym varieties”, Int. Math. Res. Not., 2006, Art. ID 81476, 36 pp. | DOI | MR | Zbl
[28] S. P. Novikov, A. P. Veselov, “Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations”, Soviet Math. Dokl., 30:3 (1984), 588–591 | MR | Zbl
[29] S. Grushevsky, I. Krichever, Integrable discrete Schrödinger equations and a characterization of Prym varieties by a pair of quadrisecants, , 2007 arXiv: 0705.2829v1
[30] A. Beauville, O. Debarre, “Sur le problème de Schottky pour les variétés de Prym”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14:4 (1988), 613–623 | MR | Zbl
[31] J. Fay, “On the even-order vanishing of Jacobian theta functions”, Duke Math. J., 51:1 (1984), 109–132 | DOI | MR | Zbl
[32] O. Debarre, “Vers une stratification de l'espace des modules des variétés abéliennes principalement polarisées”, Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., 1507, Springer, Berlin, 1992, 71–86 | DOI | MR | Zbl
[33] I. Krichever, T. Shiota, “Abelian solutions of the KP equation,”, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 173–192 | Zbl
[34] I. Krichever, T. Shiota, Abelian solutions of the soliton equations and geometry of abelian varieties, , 2008 arXiv: 0804.0794
[35] H. Airault, H. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and related many-body problem”, Comm. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR | Zbl
[36] I. M. Krichever, O. Babelon, E. Billey, M. Talon, “Spin generalisation of the Calogero–Moser system and the matrix KP equation”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 83–119 | MR | Zbl
[37] I. Krichever, A. Zabrodin, “Spin generalization of the Ruijsenaars–Schneider model, the non-Abelian 2D Toda chain, and representations of the Sklyanin algebra”, Russian Math. Surveys, 50:6 (1995), 1101–1150 | DOI | MR | Zbl
[38] I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin, “Quantum integrable models and discrete classical Hirota equations”, Comm. Math. Phys., 188:2 (1997), 267–304 | DOI | MR | Zbl
[39] I. Krichever, “Elliptic analog of the Toda lattice”, Internat. Math. Res. Notices, 2000, no. 8, 383–412 | DOI | MR | Zbl
[40] I. Krichever, “Elliptic solutions to difference nonlinear equations and nested Bethe ansatz equations”, Calogero–Moser–Sutherland models (Montréal, QC, 1997), CRM Ser. Math. Phys., Springer, New York, 2000, 249–271 | MR
[41] A. A. Akhmetshin, I. M. Krichever, Yu. S. Volvovskii, “Elliptic families of solutions of the Kadomtsev–Petviashvili equation and the field elliptic Calogero–Moser system”, Funct. Anal. Appl., 36:4 (2002), 253–266 | DOI | MR | Zbl
[42] A. Levin, M. Olshanetsky, A. Zotov, Hitchin systems – symplectic maps and two-dimensional version, , 2001 arXiv: nlin/0110045v3