Hamiltonian PDEs and Frobenius manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 999-1010 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg–de Vries, non-linear Schrödinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.
@article{RM_2008_63_6_a1,
     author = {B. A. Dubrovin},
     title = {Hamiltonian {PDEs} and {Frobenius} manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {999--1010},
     year = {2008},
     volume = {63},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_6_a1/}
}
TY  - JOUR
AU  - B. A. Dubrovin
TI  - Hamiltonian PDEs and Frobenius manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 999
EP  - 1010
VL  - 63
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_6_a1/
LA  - en
ID  - RM_2008_63_6_a1
ER  - 
%0 Journal Article
%A B. A. Dubrovin
%T Hamiltonian PDEs and Frobenius manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 999-1010
%V 63
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2008_63_6_a1/
%G en
%F RM_2008_63_6_a1
B. A. Dubrovin. Hamiltonian PDEs and Frobenius manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 999-1010. http://geodesic.mathdoc.fr/item/RM_2008_63_6_a1/

[1] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, , 2001 arxiv: math/0108160

[2] Si-Qi Liu, Y. Zhang, “Deformations of semisimple bihamiltonian structures of hydrodynamic type”, J. Geom. Phys., 54:4 (2005), 427–453 | DOI | MR | Zbl

[3] B. Dubrovin, Si-Qi Liu, Y. Zhang, “On Hamiltonian perturbations of hyperbolic systems of conservation laws. I: Quasitriviality of bi-Hamiltonian perturbations”, Comm. Pure Appl. Math., 59:4 (2006), 559–615 | DOI | MR | Zbl

[4] B. Dubrovin, Si-Qi Liu, Y. Zhang, “Frobenius manifolds and central invariants for the Drinfeld–Sokolov bihamiltonian structures”, Adv. Math., 219:3 (2008), 780–837 | DOI | MR | Zbl

[5] B. Dubrovin, “On universality of critical behaviour in Hamiltonian PDEs”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar: 2006–2007 (Moscow, Russia, 2006–2007), Adv. Math. Sci., 61, Amer. Math. Soc. Transl. Ser. 2, 224, Providence, RI, 2008, 59–109 | Zbl

[6] B. Dubrovin, “On Hamiltonian perturbations of hyperbolic systems of conservation laws. II: Universality of critical behaviour”, Comm. Math. Phys., 267 (2006), 117–139 | DOI | MR | Zbl

[7] T. Claeys, M. Vanlessen, “The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation”, Nonlinearity, 20:5 (2007), 1163–1184 | DOI | MR | Zbl

[8] T. Claeys, M. Vanlessen, “Universality of a double scaling limit near singular edge points in random matrix models”, Comm. Math. Phys., 273:2 (2007), 499–532 | DOI | MR | Zbl

[9] T. Grava, Ch. Klein, “Numerical solution of the small dispersion limit of Korteweg–de Vries and Whitham equations”, Comm. Pure Appl. Math., 60:11 (2007), 1623–1664 | DOI | MR | Zbl

[10] T. Claeys, T. Grava, Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann–Hilbert approach, , 2008 arxiv: math/0801.2326

[11] B. Dubrovin, T. Grava, C. Klein, “On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation”, J. Nonlinear Sci. (to appear); , 2007 arxiv: math/0704.0501