@article{RM_2008_63_6_a1,
author = {B. A. Dubrovin},
title = {Hamiltonian {PDEs} and {Frobenius} manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {999--1010},
year = {2008},
volume = {63},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_6_a1/}
}
B. A. Dubrovin. Hamiltonian PDEs and Frobenius manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 6, pp. 999-1010. http://geodesic.mathdoc.fr/item/RM_2008_63_6_a1/
[1] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, , 2001 arxiv: math/0108160
[2] Si-Qi Liu, Y. Zhang, “Deformations of semisimple bihamiltonian structures of hydrodynamic type”, J. Geom. Phys., 54:4 (2005), 427–453 | DOI | MR | Zbl
[3] B. Dubrovin, Si-Qi Liu, Y. Zhang, “On Hamiltonian perturbations of hyperbolic systems of conservation laws. I: Quasitriviality of bi-Hamiltonian perturbations”, Comm. Pure Appl. Math., 59:4 (2006), 559–615 | DOI | MR | Zbl
[4] B. Dubrovin, Si-Qi Liu, Y. Zhang, “Frobenius manifolds and central invariants for the Drinfeld–Sokolov bihamiltonian structures”, Adv. Math., 219:3 (2008), 780–837 | DOI | MR | Zbl
[5] B. Dubrovin, “On universality of critical behaviour in Hamiltonian PDEs”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar: 2006–2007 (Moscow, Russia, 2006–2007), Adv. Math. Sci., 61, Amer. Math. Soc. Transl. Ser. 2, 224, Providence, RI, 2008, 59–109 | Zbl
[6] B. Dubrovin, “On Hamiltonian perturbations of hyperbolic systems of conservation laws. II: Universality of critical behaviour”, Comm. Math. Phys., 267 (2006), 117–139 | DOI | MR | Zbl
[7] T. Claeys, M. Vanlessen, “The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation”, Nonlinearity, 20:5 (2007), 1163–1184 | DOI | MR | Zbl
[8] T. Claeys, M. Vanlessen, “Universality of a double scaling limit near singular edge points in random matrix models”, Comm. Math. Phys., 273:2 (2007), 499–532 | DOI | MR | Zbl
[9] T. Grava, Ch. Klein, “Numerical solution of the small dispersion limit of Korteweg–de Vries and Whitham equations”, Comm. Pure Appl. Math., 60:11 (2007), 1623–1664 | DOI | MR | Zbl
[10] T. Claeys, T. Grava, Universality of the break-up profile for the KdV equation in the small dispersion limit using the Riemann–Hilbert approach, , 2008 arxiv: math/0801.2326
[11] B. Dubrovin, T. Grava, C. Klein, “On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation”, J. Nonlinear Sci. (to appear); , 2007 arxiv: math/0704.0501