Multivariate sign and rank tests for independence
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 5, pp. 983-985 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2008_63_5_a11,
     author = {E. M. Sukhanova},
     title = {Multivariate sign and~rank tests for independence},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {983--985},
     year = {2008},
     volume = {63},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_5_a11/}
}
TY  - JOUR
AU  - E. M. Sukhanova
TI  - Multivariate sign and rank tests for independence
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 983
EP  - 985
VL  - 63
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_5_a11/
LA  - en
ID  - RM_2008_63_5_a11
ER  - 
%0 Journal Article
%A E. M. Sukhanova
%T Multivariate sign and rank tests for independence
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 983-985
%V 63
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2008_63_5_a11/
%G en
%F RM_2008_63_5_a11
E. M. Sukhanova. Multivariate sign and rank tests for independence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 5, pp. 983-985. http://geodesic.mathdoc.fr/item/RM_2008_63_5_a11/

[1] E. M. Sukhanova, Teoriya veroyatn. i ee primen. (to appear)

[2] E. Ollila, Sign and rank covariance matrices with applications to multivariate analysis, Dissertation, Univ. of Jyväskylä, 2002 | Zbl

[3] J. Hájek, Z. Šidák, P. K. Sen, Theory of rank tests, 2nd ed., Probab. Math. Statist., Academic Press, San Diego, SA, 1999 | MR | Zbl

[4] A. Arcones, Z. Chen, E. Giné, Ann. Statist., 22:3 (1994), 1460–1477 | DOI | MR | Zbl

[5] J. Möttönen, H. Oja, J. Tienari, Ann. Statist., 25:2 (1997), 542–552 | DOI | MR | Zbl