@article{RM_2008_63_5_a1,
author = {I. A. Cheltsov and K. A. Shramov},
title = {Log canonical thresholds of smooth {Fano} threefolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {859--958},
year = {2008},
volume = {63},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_5_a1/}
}
I. A. Cheltsov; K. A. Shramov. Log canonical thresholds of smooth Fano threefolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 5, pp. 859-958. http://geodesic.mathdoc.fr/item/RM_2008_63_5_a1/
[1] J. Kollár, “Singularities of pairs”, Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 1, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl
[2] V. Iskovskikh, Yu. Prokhorov, “Fano varieties”, Algebraic geometry, Vol. V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–245 | MR | Zbl
[3] G. Tian, “On Kähler–Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$”, Invent. Math., 89 (1987), 225–246 | DOI | MR | Zbl
[4] Q. Zhang, “Rational connectedness of log $\mathbb{Q}$-Fano varieties”, J. Reine Angew. Math., 590 (2006), 131–142 | DOI | MR | Zbl
[5] I. A. Cheltsov, “Log canonical thresholds on hypersurfaces”, Sb. Math., 192:8 (2001), 1241–1257 | DOI | MR | Zbl
[6] Jun-Muk Hwang, “Log canonical thresholds of divisors on Fano manifolds of Picard rank 1”, Compos. Math., 143:1 (2007), 89–94 | DOI | MR | Zbl
[7] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | MR | Zbl
[8] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces, , 2007 arXiv: abs/0706.0751v1
[9] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR | Zbl
[10] J. M. Johnson, J. Kollár, “Fano hypersurfaces in weighted projective 4-spaces”, Experiment. Math., 10:1 (2001), 151–158 | MR | Zbl
[11] I. Cheltsov, “Fano varieties with many selfmaps”, Adv. Math., 217:1 (2008), 97–124 | DOI | MR | Zbl
[12] I. A. Cheltsov, “Ekstremalnye metriki na dvukh mnogoobraziyakh Fano”, Matem. sb. (to appear)
[13] I. A. Cheltsov, “Double spaces with isolated singularities”, Sb. Math., 199:2 (2008), 291–306 | DOI | MR
[14] I. Cheltsov, “Log canonical thresholds of del Pezzo surfaces”, Geom. Funct. Anal. (to appear)
[15] M. Furushima, “Singular del Pezzo surfaces and analytic compactifications of $3$-dimensional complex affine space $C^3$”, Nagoya Math. J., 104 (1986), 1–28 | MR | Zbl
[16] J. W. Bruce, C. T. C. Wall, “On the classification of cubic surfaces”, J. London Math. Soc. (2), 19:2 (1979), 245–256 | DOI | MR | Zbl
[17] I. Cheltsov, On singular cubic surfaces, , 2007 arXiv: abs/0706.2666
[18] G. Tian, “On a set of polarized Kähler metrics on algebraic manifolds”, J. Differential Geom., 32:1 (1990), 99–130 | MR | Zbl
[19] I. Dolgachev, V. Iskovskikh, Finite subgroups of the plane Cremona group, , 2006 arXiv: abs/math/0610595v3
[20] A.M. Nadel, “Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature”, Ann. of Math. (2), 132:3 (1990), 549–596 | DOI | MR | Zbl
[21] J.-P. Demailly, J. Kollár, “Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds”, Ann. Sci. École Norm. Sup. (4), 34:4 (2001), 525–556 | MR | Zbl
[22] T. Aubin, “Équations du type Monge–Ampère sur les variétés kählériennes compactes”, Bull. Sci. Math. (2), 102:1 (1978), 63–95 | MR | Zbl
[23] S. T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I”, Comm. Pure Appl. Math., 31:3 (1978), 339–411 | DOI | MR | Zbl
[24] S. T. Yau, “Review on Kähler–Einstein metrics in algebraic geometry”, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996, 433–443 | MR | Zbl
[25] Y. Matsushima, “Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne”, Nagoya Math. J., 11 (1957), 145–150 | MR | Zbl
[26] M. Lübke, “Stability of Einstein–Hermitian vector bundles”, Manuscripta Math., 42:2–3 (1983), 245–257 | DOI | MR | Zbl
[27] A. Futaki, “An obstruction to the existence of Einstein–Kähler metrics”, Invent. Math., 73:3 (1983), 437–443 | DOI | MR | Zbl
[28] A. Steffens, “On the stability of the tangent bundle of Fano manifolds”, Math. Ann., 304:4 (1996), 635–643 | DOI | MR | Zbl
[29] T. Mabuchi, “Einstein–Kähler forms, Futaki invariants and convex geometry on toric Fano varieties”, Osaka J. Math., 24 (1987), 705–737 | MR | Zbl
[30] V. Batyrev, E. Selivanova, “Einstein–Kähler metrics on symmetric toric Fano manifolds”, J. Reine Angew. Math., 512 (1999), 225–236 | DOI | MR | Zbl
[31] Xu-Jia Wang, Xiaohua Zhu, “Kähler–Ricci solitons on toric manifolds with positive first Chern class”, Adv. Math., 188:1 (2004), 87–103 | DOI | MR | Zbl
[32] B. Nill, “Complete toric varieties with reductive automorphism group”, Math. Z., 252:4 (2006), 767–786 | DOI | MR | Zbl
[33] G. Tian, “On Calabi's conjecture for complex surfaces with positive first Chern class”, Invent. Math., 101:1 (1990), 101–172 | DOI | MR | Zbl
[34] H. Matsumura, P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3 (1964), 347–361 | MR | Zbl
[35] C. Arezzo, A. Ghigi, G. Pirola, “Symmetries, quotients and Kähler–Einstein metrics”, J. Reine Angew. Math., 591 (2006), 177–200 | DOI | MR | Zbl
[36] J. Park, “Birational maps of del Pezzo fibrations”, J. Reine Angew. Math., 538 (2001), 213–221 | DOI | MR | Zbl
[37] A. Corti, “Del Pezzo surfaces over Dedekind schemes”, Ann. of Math. (2), 144:3 (1996), 641–683 | DOI | MR | Zbl
[38] I. A. Cheltsov, “Birationally rigid Fano varieties”, Russian Math. Surveys, 60:5 (2005), 875–965 | DOI | MR | Zbl
[39] C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of log general type, , 2006 arXiv: math/0610203
[40] V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 875–965 | DOI | MR | Zbl
[41] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998 | DOI | MR | Zbl
[42] Yu. I. Manin, “Rational surfaces over perfect fields. II”, Math. USSR Sb., 1:2 (1967), 141–169 | DOI | MR | Zbl
[43] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl
[44] V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, J. Math. Sci. (N.Y.), 13:6 (1980), 815–868 | DOI | MR | Zbl
[45] J. Kollár, “Birational rigidity of Fano varieties and field extensions”, Tr. MIAN, 264, 2009, 103–108
[46] A. Corti, A. Pukhlikov, M. Reid, “Fano 3-fold hypersurfaces”, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 175–258 | MR | Zbl
[47] I. Cheltsov, J. Park, “Weighted Fano threefold hypersurfaces”, J. Reine Angew. Math., 600 (2006), 81–116 | DOI | MR | Zbl
[48] V. A. Iskovskikh, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 | DOI | MR | Zbl | Zbl
[49] V. A. Iskovskikh, “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | MR | Zbl | Zbl
[50] S. Mori, S. Mukai, “Classification of Fano 3-folds with $B_{2}\ge 2$”, Manuscripta Math., 36:2 (1981), 147–162 | DOI | MR | Zbl
[51] S. Mori, S. Mukai, “Erratum: `Classification of Fano 3-folds with $B_2\geq 2$' ”, Manuscripta Math., 110:3 (2003), 407 | DOI | MR | Zbl
[52] S. Mori, S. Mukai, “On Fano $3$-folds with $B_{2}\ge 2$”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 101–129 | MR | Zbl
[53] R. Lazarsfeld, Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergeb. Math. Grenzgeb. (3), 49, Springer-Verlag, Berlin, 2004 | MR | Zbl
[54] E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergeb. Math. Grenzgeb. (3), 30, Springer-Verlag, Berlin, 1995 | MR | Zbl
[55] J. Song, “The $\alpha$-invariant on toric Fano threefolds”, Amer. J. Math., 127:6 (2005), 1247–1259 | DOI | MR | Zbl
[56] W. Fulton, “Introduction to toric varieties”, The 1989 William H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[57] V. G. Sarkisov, “Birational automorphisms of conic bundles”, Math. USSR-Izv., 17:1 (1981), 177–202 | DOI | MR | Zbl
[58] M. Szurek, J. Wiśniewski, “Fano bundles of rank $2$ on surfaces”, Algebraic geometry (Berlin, 1988), Compos. Math., 76, no. 1–2, 1990, 295–305 | MR | Zbl
[59] P. Jahnke, T. Peternell, I. Radloff, Threefolds with big and nef anticanonical bundles. II, , 2007 arXiv: 0710.2763
[60] P. Jahnke, T. Peternell, Almost del Pezzo manifolds, , 2006 arXiv: math/0612516
[61] M. Furushima, “Singular Fano compactifications of $\mathbb{C}^{3}$. I”, Math. Z., 248:4 (2004), 709–723 | DOI | MR | Zbl
[62] V. V. Šokurov, “Birational automorphisms of conic bundles”, Math. USSR-Izv., 15:1 (1980), 173–209 | DOI | MR | Zbl
[63] J.-P. Demailly, “Regularization of closed positive currents and intersection theory”, J. Algebraic Geom., 1:3 (1992), 361–409 | MR | Zbl
[64] J. Johnson, J. Kollár, “Kähler–Einstein metrics on log del Pezzo surfaces in weighted projective $3$-spaces”, Ann. Inst. Fourier (Grenoble), 51:1 (2001), 69–79 | MR | Zbl
[65] C. Boyer, K. Galicki, J. Kollár, “Einstein metrics on spheres”, Ann. of Math. (2), 162:1 (2005), 557–580 | DOI | MR | Zbl
[66] J.-P. Demailly, “Singular Hermitian metrics on positive line bundles”, Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., 1507, Springer, Berlin, 1992, 87–104 | DOI | MR | Zbl
[67] A. N. Varchenko, “The complex exponent of a singularity does not change along strata $\mu=\operatorname{const}$”, Funct. Anal. Appl., 16:1 (1982), 1–9 | DOI | MR | Zbl
[68] A. N. Varchenko, “Semicontinuity of the complex singularity index”, Funct. Anal. Appl., 17:4 (1983), 307–309 | DOI | MR | Zbl
[69] V. I. Arnol'd, S. M. Gusejn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II. Monodromy and asymptotics of integrals, Monogr. Math., 83, Birkhäuser, Boston, 1988 | MR | MR | Zbl | Zbl
[70] Y. T. Siu, “The existence of Kähler–Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group”, Ann. of Math. (2), 127:3 (1988), 585–627 | DOI | MR | Zbl
[71] T. Ohsawa, K. Takegoshi, “On the extension of $L^2$ holomorphic functions”, Math. Z., 195:2 (1987), 197–204 | DOI | MR | Zbl
[72] T. Ohsawa, “On the extension of $L^2$ holomorphic functions. II”, Publ. Res. Inst. Math. Sci., 24:2 (1988), 265–275 | DOI | MR | Zbl
[73] J.-P. Demailly, “Estimations $L^2$ pour l'opérateur $\bar\partial$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète”, Ann. Sci. École Norm. Sup. (4), 15:3 (1982), 457–511 | MR | Zbl