Log canonical thresholds of smooth Fano threefolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 5, pp. 859-958 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The complex singularity exponent is a local invariant of a holomorphic function determined by the integrability of fractional powers of the function. The log canonical thresholds of effective $\mathbb{Q}$-divisors on normal algebraic varieties are algebraic counterparts of complex singularity exponents. For a Fano variety, these invariants have global analogues. In the former case, it is the so-called $\alpha$-invariant of Tian; in the latter case, it is the global log canonical threshold of the Fano variety, which is the infimum of log canonical thresholds of all effective $\mathbb{Q}$-divisors numerically equivalent to the anticanonical divisor. An appendix to this paper contains a proof that the global log canonical threshold of a smooth Fano variety coincides with its $\alpha$-invariant of Tian. The purpose of the paper is to compute the global log canonical thresholds of smooth Fano threefolds (altogether, there are 105 deformation families of such threefolds). The global log canonical thresholds are computed for every smooth threefold in 64 deformation families, and the global log canonical thresholds are computed for a general threefold in 20 deformation families. Some bounds for the global log canonical thresholds are computed for 14 deformation families. Appendix A is due to J.-P. Demailly.
@article{RM_2008_63_5_a1,
     author = {I. A. Cheltsov and K. A. Shramov},
     title = {Log canonical thresholds of smooth {Fano} threefolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {859--958},
     year = {2008},
     volume = {63},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_5_a1/}
}
TY  - JOUR
AU  - I. A. Cheltsov
AU  - K. A. Shramov
TI  - Log canonical thresholds of smooth Fano threefolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 859
EP  - 958
VL  - 63
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_5_a1/
LA  - en
ID  - RM_2008_63_5_a1
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%A K. A. Shramov
%T Log canonical thresholds of smooth Fano threefolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 859-958
%V 63
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2008_63_5_a1/
%G en
%F RM_2008_63_5_a1
I. A. Cheltsov; K. A. Shramov. Log canonical thresholds of smooth Fano threefolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 5, pp. 859-958. http://geodesic.mathdoc.fr/item/RM_2008_63_5_a1/

[1] J. Kollár, “Singularities of pairs”, Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 1, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl

[2] V. Iskovskikh, Yu. Prokhorov, “Fano varieties”, Algebraic geometry, Vol. V, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999, 1–245 | MR | Zbl

[3] G. Tian, “On Kähler–Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$”, Invent. Math., 89 (1987), 225–246 | DOI | MR | Zbl

[4] Q. Zhang, “Rational connectedness of log $\mathbb{Q}$-Fano varieties”, J. Reine Angew. Math., 590 (2006), 131–142 | DOI | MR | Zbl

[5] I. A. Cheltsov, “Log canonical thresholds on hypersurfaces”, Sb. Math., 192:8 (2001), 1241–1257 | DOI | MR | Zbl

[6] Jun-Muk Hwang, “Log canonical thresholds of divisors on Fano manifolds of Picard rank 1”, Compos. Math., 143:1 (2007), 89–94 | DOI | MR | Zbl

[7] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | MR | Zbl

[8] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces, , 2007 arXiv: abs/0706.0751v1

[9] A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173 | MR | Zbl

[10] J. M. Johnson, J. Kollár, “Fano hypersurfaces in weighted projective 4-spaces”, Experiment. Math., 10:1 (2001), 151–158 | MR | Zbl

[11] I. Cheltsov, “Fano varieties with many selfmaps”, Adv. Math., 217:1 (2008), 97–124 | DOI | MR | Zbl

[12] I. A. Cheltsov, “Ekstremalnye metriki na dvukh mnogoobraziyakh Fano”, Matem. sb. (to appear)

[13] I. A. Cheltsov, “Double spaces with isolated singularities”, Sb. Math., 199:2 (2008), 291–306 | DOI | MR

[14] I. Cheltsov, “Log canonical thresholds of del Pezzo surfaces”, Geom. Funct. Anal. (to appear)

[15] M. Furushima, “Singular del Pezzo surfaces and analytic compactifications of $3$-dimensional complex affine space $C^3$”, Nagoya Math. J., 104 (1986), 1–28 | MR | Zbl

[16] J. W. Bruce, C. T. C. Wall, “On the classification of cubic surfaces”, J. London Math. Soc. (2), 19:2 (1979), 245–256 | DOI | MR | Zbl

[17] I. Cheltsov, On singular cubic surfaces, , 2007 arXiv: abs/0706.2666

[18] G. Tian, “On a set of polarized Kähler metrics on algebraic manifolds”, J. Differential Geom., 32:1 (1990), 99–130 | MR | Zbl

[19] I. Dolgachev, V. Iskovskikh, Finite subgroups of the plane Cremona group, , 2006 arXiv: abs/math/0610595v3

[20] A.M. Nadel, “Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature”, Ann. of Math. (2), 132:3 (1990), 549–596 | DOI | MR | Zbl

[21] J.-P. Demailly, J. Kollár, “Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds”, Ann. Sci. École Norm. Sup. (4), 34:4 (2001), 525–556 | MR | Zbl

[22] T. Aubin, “Équations du type Monge–Ampère sur les variétés kählériennes compactes”, Bull. Sci. Math. (2), 102:1 (1978), 63–95 | MR | Zbl

[23] S. T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I”, Comm. Pure Appl. Math., 31:3 (1978), 339–411 | DOI | MR | Zbl

[24] S. T. Yau, “Review on Kähler–Einstein metrics in algebraic geometry”, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996, 433–443 | MR | Zbl

[25] Y. Matsushima, “Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne”, Nagoya Math. J., 11 (1957), 145–150 | MR | Zbl

[26] M. Lübke, “Stability of Einstein–Hermitian vector bundles”, Manuscripta Math., 42:2–3 (1983), 245–257 | DOI | MR | Zbl

[27] A. Futaki, “An obstruction to the existence of Einstein–Kähler metrics”, Invent. Math., 73:3 (1983), 437–443 | DOI | MR | Zbl

[28] A. Steffens, “On the stability of the tangent bundle of Fano manifolds”, Math. Ann., 304:4 (1996), 635–643 | DOI | MR | Zbl

[29] T. Mabuchi, “Einstein–Kähler forms, Futaki invariants and convex geometry on toric Fano varieties”, Osaka J. Math., 24 (1987), 705–737 | MR | Zbl

[30] V. Batyrev, E. Selivanova, “Einstein–Kähler metrics on symmetric toric Fano manifolds”, J. Reine Angew. Math., 512 (1999), 225–236 | DOI | MR | Zbl

[31] Xu-Jia Wang, Xiaohua Zhu, “Kähler–Ricci solitons on toric manifolds with positive first Chern class”, Adv. Math., 188:1 (2004), 87–103 | DOI | MR | Zbl

[32] B. Nill, “Complete toric varieties with reductive automorphism group”, Math. Z., 252:4 (2006), 767–786 | DOI | MR | Zbl

[33] G. Tian, “On Calabi's conjecture for complex surfaces with positive first Chern class”, Invent. Math., 101:1 (1990), 101–172 | DOI | MR | Zbl

[34] H. Matsumura, P. Monsky, “On the automorphisms of hypersurfaces”, J. Math. Kyoto Univ., 3 (1964), 347–361 | MR | Zbl

[35] C. Arezzo, A. Ghigi, G. Pirola, “Symmetries, quotients and Kähler–Einstein metrics”, J. Reine Angew. Math., 591 (2006), 177–200 | DOI | MR | Zbl

[36] J. Park, “Birational maps of del Pezzo fibrations”, J. Reine Angew. Math., 538 (2001), 213–221 | DOI | MR | Zbl

[37] A. Corti, “Del Pezzo surfaces over Dedekind schemes”, Ann. of Math. (2), 144:3 (1996), 641–683 | DOI | MR | Zbl

[38] I. A. Cheltsov, “Birationally rigid Fano varieties”, Russian Math. Surveys, 60:5 (2005), 875–965 | DOI | MR | Zbl

[39] C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of log general type, , 2006 arXiv: math/0610203

[40] V. V. Shokurov, “3-fold log flips”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 875–965 | DOI | MR | Zbl

[41] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998 | DOI | MR | Zbl

[42] Yu. I. Manin, “Rational surfaces over perfect fields. II”, Math. USSR Sb., 1:2 (1967), 141–169 | DOI | MR | Zbl

[43] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[44] V. A. Iskovskikh, “Birational automorphisms of three-dimensional algebraic varieties”, J. Math. Sci. (N.Y.), 13:6 (1980), 815–868 | DOI | MR | Zbl

[45] J. Kollár, “Birational rigidity of Fano varieties and field extensions”, Tr. MIAN, 264, 2009, 103–108

[46] A. Corti, A. Pukhlikov, M. Reid, “Fano 3-fold hypersurfaces”, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 175–258 | MR | Zbl

[47] I. Cheltsov, J. Park, “Weighted Fano threefold hypersurfaces”, J. Reine Angew. Math., 600 (2006), 81–116 | DOI | MR | Zbl

[48] V. A. Iskovskikh, “Fano 3-folds. I”, Math. USSR-Izv., 11:3 (1977), 485–527 | DOI | MR | Zbl | Zbl

[49] V. A. Iskovskikh, “Fano 3-folds. II”, Math. USSR-Izv., 12:3 (1978), 469–506 | DOI | MR | Zbl | Zbl

[50] S. Mori, S. Mukai, “Classification of Fano 3-folds with $B_{2}\ge 2$”, Manuscripta Math., 36:2 (1981), 147–162 | DOI | MR | Zbl

[51] S. Mori, S. Mukai, “Erratum: `Classification of Fano 3-folds with $B_2\geq 2$' ”, Manuscripta Math., 110:3 (2003), 407 | DOI | MR | Zbl

[52] S. Mori, S. Mukai, “On Fano $3$-folds with $B_{2}\ge 2$”, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, 101–129 | MR | Zbl

[53] R. Lazarsfeld, Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergeb. Math. Grenzgeb. (3), 49, Springer-Verlag, Berlin, 2004 | MR | Zbl

[54] E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergeb. Math. Grenzgeb. (3), 30, Springer-Verlag, Berlin, 1995 | MR | Zbl

[55] J. Song, “The $\alpha$-invariant on toric Fano threefolds”, Amer. J. Math., 127:6 (2005), 1247–1259 | DOI | MR | Zbl

[56] W. Fulton, “Introduction to toric varieties”, The 1989 William H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[57] V. G. Sarkisov, “Birational automorphisms of conic bundles”, Math. USSR-Izv., 17:1 (1981), 177–202 | DOI | MR | Zbl

[58] M. Szurek, J. Wiśniewski, “Fano bundles of rank $2$ on surfaces”, Algebraic geometry (Berlin, 1988), Compos. Math., 76, no. 1–2, 1990, 295–305 | MR | Zbl

[59] P. Jahnke, T. Peternell, I. Radloff, Threefolds with big and nef anticanonical bundles. II, , 2007 arXiv: 0710.2763

[60] P. Jahnke, T. Peternell, Almost del Pezzo manifolds, , 2006 arXiv: math/0612516

[61] M. Furushima, “Singular Fano compactifications of $\mathbb{C}^{3}$. I”, Math. Z., 248:4 (2004), 709–723 | DOI | MR | Zbl

[62] V. V. Šokurov, “Birational automorphisms of conic bundles”, Math. USSR-Izv., 15:1 (1980), 173–209 | DOI | MR | Zbl

[63] J.-P. Demailly, “Regularization of closed positive currents and intersection theory”, J. Algebraic Geom., 1:3 (1992), 361–409 | MR | Zbl

[64] J. Johnson, J. Kollár, “Kähler–Einstein metrics on log del Pezzo surfaces in weighted projective $3$-spaces”, Ann. Inst. Fourier (Grenoble), 51:1 (2001), 69–79 | MR | Zbl

[65] C. Boyer, K. Galicki, J. Kollár, “Einstein metrics on spheres”, Ann. of Math. (2), 162:1 (2005), 557–580 | DOI | MR | Zbl

[66] J.-P. Demailly, “Singular Hermitian metrics on positive line bundles”, Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., 1507, Springer, Berlin, 1992, 87–104 | DOI | MR | Zbl

[67] A. N. Varchenko, “The complex exponent of a singularity does not change along strata $\mu=\operatorname{const}$”, Funct. Anal. Appl., 16:1 (1982), 1–9 | DOI | MR | Zbl

[68] A. N. Varchenko, “Semicontinuity of the complex singularity index”, Funct. Anal. Appl., 17:4 (1983), 307–309 | DOI | MR | Zbl

[69] V. I. Arnol'd, S. M. Gusejn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II. Monodromy and asymptotics of integrals, Monogr. Math., 83, Birkhäuser, Boston, 1988 | MR | MR | Zbl | Zbl

[70] Y. T. Siu, “The existence of Kähler–Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group”, Ann. of Math. (2), 127:3 (1988), 585–627 | DOI | MR | Zbl

[71] T. Ohsawa, K. Takegoshi, “On the extension of $L^2$ holomorphic functions”, Math. Z., 195:2 (1987), 197–204 | DOI | MR | Zbl

[72] T. Ohsawa, “On the extension of $L^2$ holomorphic functions. II”, Publ. Res. Inst. Math. Sci., 24:2 (1988), 265–275 | DOI | MR | Zbl

[73] J.-P. Demailly, “Estimations $L^2$ pour l'opérateur $\bar\partial$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète”, Ann. Sci. École Norm. Sup. (4), 15:3 (1982), 457–511 | MR | Zbl