Central extensions of Lax operator algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 4, pp. 727-766 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lax operator algebras were introduced by Krichever and Sheinman as a further development of Krichever's theory of Lax operators on algebraic curves. These are almost-graded Lie algebras of current type. In this paper local cocycles and associated almost-graded central extensions of Lax operator algebras are classified. It is shown that in the case when the corresponding finite-dimensional Lie algebra is simple the two-cohomology space is one-dimensional. An important role is played by the action of the Lie algebra of meromorphic vector fields on the Lax operator algebra via suitable covariant derivatives.
@article{RM_2008_63_4_a3,
     author = {M. Schlichenmaier and O. K. Sheinman},
     title = {Central extensions of {Lax} operator algebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {727--766},
     year = {2008},
     volume = {63},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_4_a3/}
}
TY  - JOUR
AU  - M. Schlichenmaier
AU  - O. K. Sheinman
TI  - Central extensions of Lax operator algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 727
EP  - 766
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_4_a3/
LA  - en
ID  - RM_2008_63_4_a3
ER  - 
%0 Journal Article
%A M. Schlichenmaier
%A O. K. Sheinman
%T Central extensions of Lax operator algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 727-766
%V 63
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2008_63_4_a3/
%G en
%F RM_2008_63_4_a3
M. Schlichenmaier; O. K. Sheinman. Central extensions of Lax operator algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 4, pp. 727-766. http://geodesic.mathdoc.fr/item/RM_2008_63_4_a3/

[1] I. M. Krichever, O. K. Sheĭnman, “Lax operator algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294 ; arXiv: math/0701648 | DOI | MR

[2] I. M. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl

[3] I. M. Krichever, S. P. Novikov, “Holomorphic bundles on algebraic curves and nonlinear equations”, Russian Math. Surveys, 35:6 (1980), 53–79 | DOI | MR | Zbl | Zbl

[4] A. N. Tyurin, “Classification of vector bundles over an algebraic curve of arbitrary genus”, Amer. Math. Soc. Transl. Ser. 2, 63, Amer. Math. Soc., Providence, RI, 1967, 245–279 | MR | Zbl

[5] O. K. Sheinman, Algebry Krichevera–Novikova, ikh predstavleniya i prilozheniya v geometrii i matematicheskoi fizike, Sovremennye problemy matematiki, 10, MIAN, M., 2007 | DOI

[6] O. K. Sheinman, “Affine Krichever–Novikov algebras, their representations and applications”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar (Moscow, 2002-2003), Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 297–316 ; arXiv: math/0304020 | MR | Zbl

[7] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 | DOI | MR | Zbl

[8] I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowsky space”, Funct. Anal. Appl., 21:4 (1987), 294–307 | DOI | MR | Zbl

[9] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, energy-momentum tensor, and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33 | DOI | MR | Zbl

[10] M. Schlichenmaier, O. K. Sheinman, “Wess–Zumino–Witten–Novikov theory, Knizhnik–Zamolodchikov equations, and Krichever–Novikov algebras I”, Russian Math. Surveys, 54:1 (1999), 213–249 | DOI | MR | Zbl

[11] M. Schlichenmaier, O. K. Sheinman, “Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras”, Russian Math. Surveys, 59:4 (2004), 737–770 | DOI | MR | Zbl

[12] V. G. Kac, “Simple irreducible graded Lie algebras of finite growth”, Math. USSR-Izv., 2:6 (1968), 1271–1311 | DOI | MR | Zbl

[13] R. V. Moody, “Euclidean Lie algebras”, Canad. J. Math., 21 (1969), 1432–1454 | MR | Zbl

[14] H. Garland, “The arithmetic theory of loop groups”, Inst. Hautes Études Sci. Publ. Math., 1980, no. 52, 5–136 | DOI | MR | Zbl

[15] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990 | MR | MR | Zbl | Zbl

[16] Ch. Kassel, Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983), J. Pure Appl. Algebra, 34, no. 2–3, 1984 | DOI | MR | Zbl

[17] O. K. Sheinman, “Elliptic affine Lie algebras”, Funct. Anal. Appl., 24:3 (1990), 210–219 | DOI | MR | Zbl

[18] O. K. Sheinman, “Affine Lie algebras on Riemann surfaces”, Funct. Anal. Appl., 27:4 (1993), 266–272 | DOI | MR | Zbl

[19] M. Schlichenmaier, O. K. Sheinman, “The Sugawara construction and Casimir operators for Krichever–Novikov algebras”, J. Math. Sci. (New York), 92:2 (1998), 3807–3834 ; arXiv: q-alg/9512016 | DOI | MR | Zbl

[20] M. Schlichenmaier, “Higher genus affine algebras of Krichever–Novikov type”, Mosc. Math. J., 3:4 (2003), 1395–1427 | MR | Zbl

[21] M. Schlichenmaier, “Local cocycles and central extensions for multi-point algebras of Krichever–Novikov type”, J. Reine Angew. Math., 559 (2003), 53–94 | DOI | MR | Zbl

[22] M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras. The multi-point case” (to appear)

[23] I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752 ; arXiv: hep-th/0112096 | MR | Zbl

[24] M. Schlichenmaier, “Krichever–Novikov algebras for more than two points”, Lett. Math. Phys., 19:2 (1990), 151–165 | DOI | MR | Zbl

[25] M. Schlichenmaier, “Krichever–Novikov algebras for more than two points: explicit generators”, Lett. Math. Phys., 19:4 (1990), 327–336 | DOI | MR | Zbl

[26] M. Schlichenmaier, “Central extensions and semi-infinite wedge representations of Krichever–Novikov algebras for more than two points”, Lett. Math. Phys., 20:1 (1990), 33–46 | DOI | MR | Zbl

[27] M. Schlichenmaier, Verallgemeinerte Krichever–Novikov Algebren und deren Darstellungen, Ph. D. Thesis, Universität Mannheim, Mannheim, 1990 | Zbl