@article{RM_2008_63_4_a2,
author = {V. V. Kozlov},
title = {The generalized {Vlasov} kinetic equation},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {691--726},
year = {2008},
volume = {63},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_4_a2/}
}
V. V. Kozlov. The generalized Vlasov kinetic equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 4, pp. 691-726. http://geodesic.mathdoc.fr/item/RM_2008_63_4_a2/
[1] R. L. Dobrushin, Ya. G. Sinai, Yu. M. Sukhov, “Dynamical systems of statistical mechanics”, Dynamical systems. II. Ergodic theory with applications to dynamical systems and statistical mechanics, Encyclopaedia Math. Sci., 2, Springer-Verlag, Berlin, 1989, 207–278 | MR | Zbl
[2] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002 | MR | Zbl
[3] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008
[4] V. V. Kozlov, D. V. Treschev, “On new forms of the ergodic theorem”, J. Dynam. Control Systems, 9:3 (2003), 449–453 | DOI | MR | Zbl
[5] V. I. Bogachev, A. V. Korolev, “Ob ergodicheskoi teoreme v forme Kozlova–Trescheva”, Dokl. RAN, 412:3 (2007), 295–301
[6] J. W. Gibbs, Elementary principles in statistical mechanics developed with especial reference to the rational foundation of thermodynamics, Charles Scribners Sons, New York, 1902 | Zbl
[7] G. E. Uhlenbeck, G. W. Ford, Lectures in statistical mechanics, Proceedings of the Summer Seminar (Boulder, Colorado, 1960), Lectures in Appl. Math., 1, Amer. Math. Soc., Providence, RI, 1963 | MR | Zbl
[8] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 | MR
[9] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001
[10] V. P. Maslov, “Equations of the self-consistent field”, J. Sov. Math., 11 (1979), 123–195 | DOI | MR | Zbl | Zbl
[11] E. Hölder, “Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit”, Math. Z., 37:1 (1933), 727–738 | DOI | MR | Zbl
[12] W. Wolibner, “Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long”, Math. Z., 37:1 (1933), 698–726 | DOI | MR | Zbl
[13] U. Frisch, Turbulence. The legacy of A. N. Kolmogorov, Cambridge, Cambridge Univ. Press, 1995 | Zbl
[14] V. I. Yudovich, “O problemakh i perspektivakh sovremennoi matematicheskoi gidrodinamiki”, Uspekhi mekhaniki, 1 (2002), 61–102
[15] W. Braun, K. Hepp, “The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles”, Comm. Math. Phys., 56:2 (1977), 101–113 | DOI | MR
[16] R. L. Dobrushin, “Vlasov equations”, Funct. Anal. Appl., 13:2 (1979), 115–123 | DOI | MR | Zbl
[17] V. V. Kozlov, D. V. Treshchev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Theoret. and Math. Phys., 134:3 (2003), 339–350 | DOI | MR
[18] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | MR | Zbl
[19] A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?”, Proc. Steklov Inst. Math., 259:2 (2007), 248–272 | DOI
[20] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1947 | Zbl
[21] A. Ionescu Tulcea, “Ergodic properties of isometries in $L_p$-spaces, $1
\infty$”, Bull. Amer. Math. Soc., 70 (1964), 366–371 | DOI | MR | Zbl[22] M. A. Akcoglu, “A pointwise ergodic theorem in $L_p$-spaces”, Canad. J. Math., 27:5 (1975), 1075–1082 | MR | Zbl
[23] D. Montgomery, G. Joyce, “Statistical mechanics of ‘negative temperature’ states”, Phys. Fluids, 17:6 (1974), 1139–1145 | DOI | MR
[24] R. Robert, J. Sommeria, “Statistical equilibrium states for two-dimensional flows”, J. Fluid Mech., 229 (1991), 291–310 | DOI | MR | Zbl
[25] M. B. Isichenko, “Percolation, statistical topography, and transport in random media”, Rev. Modern Phys., 64:4 (1992), 961–1043 | DOI | MR
[26] G. L. Eyink, H. Spohn, “Negative temperature states and large-scale long-lived vortices in two-dimensional turbulence”, J. Statist. Phys., 70:3–4 (1993), 833–886 | DOI | MR | Zbl
[27] L. Onsager, “Statistical hydrodynamics”, Nuovo Cimento (9), 6:2 (1949), 279–287 | DOI | MR
[28] H. Marmanis, “The kinetic theory of point vortices”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 454 (1998), 587–606 | DOI | MR | Zbl
[29] V. V. Kozlov, “Vorticity equation of 2D-hydrodynamics, Vlasov steady-state kinetic equation and developed turbulence”, IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, August 25–30, 2006), Springer, 2008, 27–37 | DOI
[30] A. A. Vlasov, Teoriya mnogikh chastits, Gostekhizdat, M., 1950
[31] N. N. Bogolyubov, “Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls”, Theoret. and Math. Phys., 24:2 (1975), 804–807 | DOI | MR
[32] E. A. Novikov, “Dinamika i statistika sistemy vikhrei”, ZhETF, 68:5 (1975), 1868–1882
[33] Y. Pomeau, “Asymptotic time behaviour of nonlinear classical field equations”, Nonlinearity, 5:3 (1992), 707–720 | DOI | MR | Zbl
[34] H. Poincaré, “Réflexions sur la théorie cinétique des gaz”, J. de Phys., Sér. 4, 5 (1906), 369–403 | MR | Zbl | Zbl
[35] C. C. Lim, J. Nebus, Vorticity, statistical mechanics, and Monte Carlo simulations, Springer Monogr. Math., Springer, New York, 2007 | DOI | MR | Zbl
[36] V. V. Kozlov, D. V. Treshchev, “Fine-grained and coarse-grained entropy in problems of statistical mechanics”, Theoret. and Math. Phys., 151:1 (2007), 539–555 | DOI | MR | Zbl
[37] G. N. Piftankin, D. V. Treschev, “Gibbs entropy and dynamics”, Chaos, 18:2 (2008), 023116, 10 p | DOI
[38] V. V. Kozlov, O. G. Smolyanov, “Weak convergence of states in statistical quantum mechanics”, Dokl. Math., 76:3 (2007), 958–961 | DOI | Zbl
[39] J. Miller, “Statistical mechanics of Euler equations in two dimensions”, Phys. Rev. Lett., 65:17 (1990), 2137–2140 | DOI | MR | Zbl
[40] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Springer, Berlin, 2006 | DOI | MR | Zbl
[41] V. V. Kozlov, “Ansambli Gibbsa, ravnoraspredelennost energii simpaticheskikh ostsillyatorov i statisticheskie modeli termostata”, Nelineinaya dinamika, 3:2 (2007), 123–140 | MR
[42] V. V. Kozlov, “Lagrange's identity and its generalizations”, Regul. Chaotic Dyn., 13:2 (2008), 71–80 | DOI | MR