The generalized Vlasov kinetic equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 4, pp. 691-726
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the investigation of a generalized kinetic equation describing the evolution of the density of a probability measure. In the general case this is a non-linear integro-differential equation. On the one hand, this equation includes as a special case the simpler linear Liouville equation (which underlies classical statistical mechanics) and the equation of a self-consistent field (the Vlasov kinetic equation). On the other hand, some other well-known equations also reduce to this equation, for instance, the vorticity equation for plane flows of an ideal incompressible fluid. The main aim of the paper is to study the problem of the weak limits, as the time tends to infinity, of solutions of the generalized kinetic equation. This problem plays a significant role in the transition from a micro- to a macrodescription, when the behaviour of the averages (most probable values) of dynamical quantities is considered. The theory of weak limits of solutions of the Liouville equation is closely connected with ideas and methods of ergodic theory. The case under consideration presents greater difficulties, which stem from the non-trivial problem of the existence of invariant countably-additive measures for dynamical systems in infinite-dimensional spaces. General results are applied to the analysis of continua of interacting particles and to the investigation of statistical properties of plane flows of an ideal fluid.
@article{RM_2008_63_4_a2,
     author = {V. V. Kozlov},
     title = {The generalized {Vlasov} kinetic equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {691--726},
     year = {2008},
     volume = {63},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_4_a2/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - The generalized Vlasov kinetic equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 691
EP  - 726
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_4_a2/
LA  - en
ID  - RM_2008_63_4_a2
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T The generalized Vlasov kinetic equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 691-726
%V 63
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2008_63_4_a2/
%G en
%F RM_2008_63_4_a2
V. V. Kozlov. The generalized Vlasov kinetic equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 4, pp. 691-726. http://geodesic.mathdoc.fr/item/RM_2008_63_4_a2/

[1] R. L. Dobrushin, Ya. G. Sinai, Yu. M. Sukhov, “Dynamical systems of statistical mechanics”, Dynamical systems. II. Ergodic theory with applications to dynamical systems and statistical mechanics, Encyclopaedia Math. Sci., 2, Springer-Verlag, Berlin, 1989, 207–278 | MR | Zbl

[2] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002 | MR | Zbl

[3] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008

[4] V. V. Kozlov, D. V. Treschev, “On new forms of the ergodic theorem”, J. Dynam. Control Systems, 9:3 (2003), 449–453 | DOI | MR | Zbl

[5] V. I. Bogachev, A. V. Korolev, “Ob ergodicheskoi teoreme v forme Kozlova–Trescheva”, Dokl. RAN, 412:3 (2007), 295–301

[6] J. W. Gibbs, Elementary principles in statistical mechanics developed with especial reference to the rational foundation of thermodynamics, Charles Scribners Sons, New York, 1902 | Zbl

[7] G. E. Uhlenbeck, G. W. Ford, Lectures in statistical mechanics, Proceedings of the Summer Seminar (Boulder, Colorado, 1960), Lectures in Appl. Math., 1, Amer. Math. Soc., Providence, RI, 1963 | MR | Zbl

[8] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 | MR

[9] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[10] V. P. Maslov, “Equations of the self-consistent field”, J. Sov. Math., 11 (1979), 123–195 | DOI | MR | Zbl | Zbl

[11] E. Hölder, “Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit”, Math. Z., 37:1 (1933), 727–738 | DOI | MR | Zbl

[12] W. Wolibner, “Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long”, Math. Z., 37:1 (1933), 698–726 | DOI | MR | Zbl

[13] U. Frisch, Turbulence. The legacy of A. N. Kolmogorov, Cambridge, Cambridge Univ. Press, 1995 | Zbl

[14] V. I. Yudovich, “O problemakh i perspektivakh sovremennoi matematicheskoi gidrodinamiki”, Uspekhi mekhaniki, 1 (2002), 61–102

[15] W. Braun, K. Hepp, “The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles”, Comm. Math. Phys., 56:2 (1977), 101–113 | DOI | MR

[16] R. L. Dobrushin, “Vlasov equations”, Funct. Anal. Appl., 13:2 (1979), 115–123 | DOI | MR | Zbl

[17] V. V. Kozlov, D. V. Treshchev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Theoret. and Math. Phys., 134:3 (2003), 339–350 | DOI | MR

[18] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | MR | Zbl

[19] A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?”, Proc. Steklov Inst. Math., 259:2 (2007), 248–272 | DOI

[20] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.–L., 1947 | Zbl

[21] A. Ionescu Tulcea, “Ergodic properties of isometries in $L_p$-spaces, $1

\infty$”, Bull. Amer. Math. Soc., 70 (1964), 366–371 | DOI | MR | Zbl

[22] M. A. Akcoglu, “A pointwise ergodic theorem in $L_p$-spaces”, Canad. J. Math., 27:5 (1975), 1075–1082 | MR | Zbl

[23] D. Montgomery, G. Joyce, “Statistical mechanics of ‘negative temperature’ states”, Phys. Fluids, 17:6 (1974), 1139–1145 | DOI | MR

[24] R. Robert, J. Sommeria, “Statistical equilibrium states for two-dimensional flows”, J. Fluid Mech., 229 (1991), 291–310 | DOI | MR | Zbl

[25] M. B. Isichenko, “Percolation, statistical topography, and transport in random media”, Rev. Modern Phys., 64:4 (1992), 961–1043 | DOI | MR

[26] G. L. Eyink, H. Spohn, “Negative temperature states and large-scale long-lived vortices in two-dimensional turbulence”, J. Statist. Phys., 70:3–4 (1993), 833–886 | DOI | MR | Zbl

[27] L. Onsager, “Statistical hydrodynamics”, Nuovo Cimento (9), 6:2 (1949), 279–287 | DOI | MR

[28] H. Marmanis, “The kinetic theory of point vortices”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 454 (1998), 587–606 | DOI | MR | Zbl

[29] V. V. Kozlov, “Vorticity equation of 2D-hydrodynamics, Vlasov steady-state kinetic equation and developed turbulence”, IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, August 25–30, 2006), Springer, 2008, 27–37 | DOI

[30] A. A. Vlasov, Teoriya mnogikh chastits, Gostekhizdat, M., 1950

[31] N. N. Bogolyubov, “Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls”, Theoret. and Math. Phys., 24:2 (1975), 804–807 | DOI | MR

[32] E. A. Novikov, “Dinamika i statistika sistemy vikhrei”, ZhETF, 68:5 (1975), 1868–1882

[33] Y. Pomeau, “Asymptotic time behaviour of nonlinear classical field equations”, Nonlinearity, 5:3 (1992), 707–720 | DOI | MR | Zbl

[34] H. Poincaré, “Réflexions sur la théorie cinétique des gaz”, J. de Phys., Sér. 4, 5 (1906), 369–403 | MR | Zbl | Zbl

[35] C. C. Lim, J. Nebus, Vorticity, statistical mechanics, and Monte Carlo simulations, Springer Monogr. Math., Springer, New York, 2007 | DOI | MR | Zbl

[36] V. V. Kozlov, D. V. Treshchev, “Fine-grained and coarse-grained entropy in problems of statistical mechanics”, Theoret. and Math. Phys., 151:1 (2007), 539–555 | DOI | MR | Zbl

[37] G. N. Piftankin, D. V. Treschev, “Gibbs entropy and dynamics”, Chaos, 18:2 (2008), 023116, 10 p | DOI

[38] V. V. Kozlov, O. G. Smolyanov, “Weak convergence of states in statistical quantum mechanics”, Dokl. Math., 76:3 (2007), 958–961 | DOI | Zbl

[39] J. Miller, “Statistical mechanics of Euler equations in two dimensions”, Phys. Rev. Lett., 65:17 (1990), 2137–2140 | DOI | MR | Zbl

[40] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Springer, Berlin, 2006 | DOI | MR | Zbl

[41] V. V. Kozlov, “Ansambli Gibbsa, ravnoraspredelennost energii simpaticheskikh ostsillyatorov i statisticheskie modeli termostata”, Nelineinaya dinamika, 3:2 (2007), 123–140 | MR

[42] V. V. Kozlov, “Lagrange's identity and its generalizations”, Regul. Chaotic Dyn., 13:2 (2008), 71–80 | DOI | MR