@article{RM_2008_63_4_a0,
author = {R. R. Gontsov and V. A. Poberezhnyi},
title = {Various versions of the {Riemann{\textendash}Hilbert} problem for linear differential equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {603--639},
year = {2008},
volume = {63},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_4_a0/}
}
TY - JOUR AU - R. R. Gontsov AU - V. A. Poberezhnyi TI - Various versions of the Riemann–Hilbert problem for linear differential equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 603 EP - 639 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2008_63_4_a0/ LA - en ID - RM_2008_63_4_a0 ER -
%0 Journal Article %A R. R. Gontsov %A V. A. Poberezhnyi %T Various versions of the Riemann–Hilbert problem for linear differential equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2008 %P 603-639 %V 63 %N 4 %U http://geodesic.mathdoc.fr/item/RM_2008_63_4_a0/ %G en %F RM_2008_63_4_a0
R. R. Gontsov; V. A. Poberezhnyi. Various versions of the Riemann–Hilbert problem for linear differential equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 4, pp. 603-639. http://geodesic.mathdoc.fr/item/RM_2008_63_4_a0/
[1] A. A. Bolibrukh, “The Riemann–Hilbert problem”, Russian Math. Surveys, 45:2 (1990), 1–58 | DOI | MR | Zbl
[2] L. Sauvage, “Sur les solutions régulières d'un système d'équations différentielles”, Ann. Sci. École Norm. Sup. (3), 3 (1886), 391–404 | MR | Zbl
[3] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl
[4] J. Moser, “The order of a singularity in Fuchs' theory”, Math. Z., 72:1 (1959), 379–398 | DOI | MR | Zbl
[5] E. Wagenführer, “On the regularity of systems of linear differential equations at singular points”, Analysis, 4:3–4 (1984), 267–298 | MR | Zbl
[6] D. A. Lutz, R. Schäfke, “On the identification and stability of formal invariants for singular differential equations”, Linear Algebra Appl., 72 (1985), 1–46 | DOI | MR | Zbl
[7] J. Horn, “Zur Theorie der Systeme linearer Differentialgleichungen mit einer unabhängigen Veränderlichen. II”, Math. Ann., 40:4 (1892), 527–550 | DOI | MR | Zbl
[8] A. A. Bolibrukh, “Problema Rimana–Gilberta na kompleksnoi proektivnoi pryamoi”, Matem. zametki, 46:3 (1989), 118–120 | MR | Zbl
[9] D. V. Anosov, A. A. Bolibruch, “The Riemann–Hilbert problem”, Aspects Math., E22, Vieweg, Braunschweig, 1994 | MR | Zbl
[10] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i izomonodromnye deformatsii (to appear)
[11] V. P. Kostov, “Monodromy groups of regular systems on the Riemann sphere”, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 209–254 | MR
[12] J. Plemelj, “Riemannsche Funktionenscharen mit gegebener Monodromiegruppe”, Monatsch. Math. Phys., 19:1 (1908), 211–246 | DOI | MR | Zbl
[13] W. Dekkers, “The matrix of a connection having regular singularities on a vector bundle of rank $2$ on $P^1({\mathbb C})$”, Équations différentielles et systèmes de Pfaff dans le champ complexe (Inst. Rech. Math. Avancée, Strasbourg, 1975), Lecture Notes in Math., 712, Springer, Berlin, 1979, 33–43 | DOI | MR | Zbl
[14] A. A. Bolibrukh, “On sufficient conditions for the positive solvability of the Riemann–Hilbert problem”, Math. Notes, 51:2 (1992), 110–117 | DOI | MR | Zbl
[15] V. P. Kostov, “Fuchsian systems on ${\mathbb C}P^1$ and the Riemann–Hilbert problem”, C. R. Acad. Sci. Paris Sér. I Math., 315:2 (1992), 143–148 | MR | Zbl
[16] A. A. Bolibrukh, “Construction of a Fuchsian equation from a monodromy representation”, Math. Notes, 48:5 (1990), 1090–1099 | DOI | MR | Zbl | Zbl
[17] L. Fuchs, “Zur Theorie der linearen Differentialgleichungen mit veränderlichen Coefficienten”, J. Reine Angew. Math., 68 (1868), 354–385 | Zbl
[18] B. Riemann, “Zwei allgemeine Lehrsätze über lineare Differentialgleichungen mit algebraichen Koefficienten”, Math. Werke, 357–369
[19] H. Poincaré, “Sur les groupes des équations linéaires”, Acta Math., 4:1 (1884), 201–312 | DOI | MR | MR | Zbl | Zbl
[20] D. Hilbert, “Mathematische Probleme”, Gött. Nachr., 1900, 253–297 | Zbl
[21] A. A. Bolibruch, “Inverse monodromy problems of the analytic theory of differential equations”, Mathematical events of the twentieth century, Springer, Berlin, 2006, 49–74 | MR | Zbl
[22] D. V. Anosov, V. P. Leksin, “Andrei Andreevich Bolibrukh in life and science (30 January 1950–11 November 2003)”, Russian Math. Surveys, 59:6 (2004), 1009–1028 | DOI | MR | Zbl
[23] I. A. Lappo-Danilevskii, Primenenie funktsii ot matrits k teorii lineinykh sistem obyknovennykh differentsialnykh uravnenii, Gostekhizdat, M., 1957 | MR
[24] A. H. M. Levelt, “Hypergeometric functions. I”, Nederl. Akad. Wetensch. Proc. Ser. A, 64 (1961), 361–372 | MR | Zbl
[25] Yu. S. Ilyashenko, S. Yakovenko, Lectures on analytic differential equations, Grad. Stud. Math., 86, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl
[26] H. Röhrl, “Das Riemann–Hilbertsche Problem der Theorie der linearen Differentialgleichungen”, Math. Ann., 133:1 (1957), 1–25 | DOI | MR | Zbl
[27] P. Deligne, Equations différentielles à points singuliers réguliers, Lecture Notes in Math., 163, Springer-Verlag, Berlin–New York, 1970 | DOI | MR | Zbl
[28] I. V. V'yugin, R. R. Gontsov, “Additional parameters in inverse monodromy problems”, Sb. Math., 197:12 (2006), 1753–1773 | DOI
[29] O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher, 184, Springer-Verlag, Berlin–New York, 1977 | MR | MR | Zbl
[30] A. A. Bolibruch, “The Riemann–Hilbert problem on a compact Riemannian surface”, Proc. Steklov Inst. Math., 238 (2002), 47–60 | MR | Zbl
[31] I. V. V'yugin, “Constructive solvability conditions for the Riemann–Hilbert problem”, Math. Notes, 77:5–6 (2005), 595–605 | DOI | MR | Zbl
[32] A. A. Bolibruch, “Vector bundles associated with monodromies and asymptotics of Fuchsian systems”, J. Dynam. Control Systems, 1:2 (1995), 229–252 | DOI | MR | Zbl
[33] T. Kimura, K. Shima, “A note on the monodromy of the hypergeometric differential equation”, Japan. J. Math. (N. S.), 17:1 (1991), 137–163 | MR | Zbl
[34] V. A. Poberezhnyi, “Special monodromy groups and the Riemann–Hilbert problem for the Riemann equation”, Math. Notes, 77:5–6 (2005), 695–707 | DOI | MR | Zbl
[35] I. V. Vyugin, “Ob ekvivalentnykh formulirovkakh 21-i problemy Gilberta”, Tezisy dokladov Mezhdunarodnoi konferentsii po differentsialnym uravneniyam i dinamicheskim sistemam (Suzdal), 2008, 62–63
[36] S. Kowalevski, “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12:1 (1889), 177–232 | DOI | MR | Zbl
[37] P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25:1 (1902), 1–85 | DOI | MR | Zbl
[38] R. Fuchs, “Sur quelques équations différentielles linéaires du second ordre”, C. R. Acad. Sci. Paris, 141 (1905), 555–558 | Zbl
[39] B. Gambier, “Sur les équations différentielles du second ordre dont l'intégrale générale est uniforme”, C. R. Acad. Sci. Paris, 142 (1906), 266–269 | Zbl
[40] L. Schlesinger, “Über Losungen gewisser Differentialgleichungen als Funktionen der singularen Punkte”, J. Reine Angew. Math., 129 (1906), 287–294 | Zbl
[41] B. Malgrange, “Sur les déformations isomonodromiques. I. Singularités régulières”, Mathematics and physics, Semin. École Norm. Sup. (Paris, 1979–1982), Progr. Math., 37, Birkhäuser, Boston, MA, 1983, 401–426 | MR | Zbl
[42] M. Jimbo, T. Miwa, “Monodromy preserving deformations of linear differential equations with rational coefficients. II”, Phys. D, 2:3 (1981), 407–448 | DOI | MR
[43] R. Garnier, “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | MR | Zbl
[44] P. Painlevé, “Sur les équations différentielles du second ordre à points critiques fixés”, C. R. Acad. Sci. Paris, 143 (1907), 1111–1117 | Zbl
[45] B. Dubrovin, M. Mazzocco, “Canonical structure and symmetries of the Schlesinger equations”, Comm. Math. Phys., 271:2 (2007), 289–373 ; arXiv: math/0311261 | DOI | MR | Zbl
[46] N. J. Hitchin, “Poncelet polygons and the Painlevé equations”, Geometry and analysis (Bombay, 1992), Tata Inst. Fundam. Res., 13, Oxford Univ. Press, Oxford, 1995, 151–185 | MR | Zbl
[47] B. Dubrovin, M. Mazzocco, “Monodromy of certain Painlevé-VI transcendents and reflection groups”, Invent. Math., 141:1 (2000), 55–147 | DOI | MR | Zbl
[48] P. P. Boalch, “From Klein to Painlevé via Fourier, Laplace and Jimbo”, Proc. London Math. Soc. (3), 90:1 (2005), 167–208 | DOI | MR | Zbl
[49] Ph. Boalch, “Six results on Painlevé VI”, Théories asymptotiques et équations de Painlevé, Sémin. Congr., 14, Soc. Math. France, Paris, 2006, 1–20 | MR | Zbl
[50] Ph. Boalch, “Some explicit solutions to the Riemann–Hilbert problem”, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., 9, Eur. Math. Soc., Zürich, 2007, 85–112 | MR
[51] H. Esnault, E. Viehweg, “Semistable bundles on curves and irreducible representations of the fundamental group”, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 129–138 | MR | Zbl
[52] H. Esnault, C. Hertling, “Semistable bundles on curves and reducible representations of the fundamental group”, Internat. J. Math., 12:7 (2001), 847–855 ; arXiv: math/0101194 | DOI | MR | Zbl
[53] M. Yoshida, “On the number of apparent singularities of the Riemann–Hilbert problem on Riemann surface”, J. Math. Soc. Japan, 49:1 (1997), 145–159 | DOI | MR | Zbl
[54] M. Ohtsuki, “On the number of apparent singularities of a linear differential equation”, Tokyo J. Math., 5:1 (1982), 23–29 | MR | Zbl
[55] A. A. Bolibruch, S. Malek, C. Mitschi, “On the generalized Riemann–Hilbert problem with irregular singularities”, Expo. Math., 24:3 (2006), 235–272 | DOI | MR | Zbl
[56] W. Balser, W. B. Jurkat, D. A. Lutz, “A general theory of invariants for meromorphic differential equations. I. Formal invariants”, Funkcial. Ekvac., 22:2 (1979), 197–221 | MR | Zbl
[57] R. R. Gontsov, I. V. V'yugin, “Some addition to the generalized Riemann–Hilbert problem”, Ann. Fac. Sci. Toulouse (to appear)
[58] W. Balser, “Birkhoff's reduction problem”, Russian Math. Surveys, 59:6 (2004), 1047–1059 | DOI | MR | Zbl
[59] H. L. Turrittin, “Reduction of ordinary differential equations to the Birkhoff canonical form”, Trans. Amer. Math. Soc., 107:3 (1963), 485–507 | DOI | MR | Zbl
[60] V. Poberezhny, “On the Painlevé property of isomonodromic deformations of Fuchsian systems”, Acta Appl. Math., 101:1–3 (2008), 255–263 | DOI | MR
[61] A. Bolibruch, “Inverse problems for linear differential equations with meromorphic coefficients”, Isomonodromic deformations and applications in physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, 31, Amer. Math. Soc., Providence, RI, 2002, 3–25 | MR | Zbl