@article{RM_2008_63_3_a1,
author = {V. M. Shelkovich},
title = {$\delta$- and $\delta'$-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {473--546},
year = {2008},
volume = {63},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_3_a1/}
}
TY - JOUR AU - V. M. Shelkovich TI - $\delta$- and $\delta'$-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 473 EP - 546 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2008_63_3_a1/ LA - en ID - RM_2008_63_3_a1 ER -
%0 Journal Article %A V. M. Shelkovich %T $\delta$- and $\delta'$-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2008 %P 473-546 %V 63 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2008_63_3_a1/ %G en %F RM_2008_63_3_a1
V. M. Shelkovich. $\delta$- and $\delta'$-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 3, pp. 473-546. http://geodesic.mathdoc.fr/item/RM_2008_63_3_a1/
[1] D. J. Korchinski, Solution of a Riemann problem for $2\times2$ systems of conservation laws possesing no classical weak solution, Thesis, Adelphi Univ., New York, 1977
[2] Ya. B. Zeldovich, A. D. Myshkis, Elementy matematicheskoi fiziki, Nauka, M., 1973 | MR
[3] A. N. Kraiko, “On discontinuity surfaces in a medium devoid of ‘proper’ pressure”, J. Appl. Math. Mech., 43:3 (1979), 539–549 | DOI | MR | Zbl
[4] E. Yu. Panov, V. M. Shelkovich, “$\delta'$-shock waves as a new type of solutions to systems of conservation laws”, J. Differential Equations, 228:1 (2006), 49–86 | DOI | MR | Zbl
[5] E. Yu. Panov, V. M. Shelkovich, “$\delta'$-shock waves as a new type of singular solutions to hyperbolic systems of conservation laws”, Doklady Math., 73:2 (2006), 264–268 | DOI | MR
[6] E. Yu. Panov, V. M. Shelkovich, “Definition of $\delta'$-shock waves type solutions and the Rankine–Hugoniot conditions”, Proceedings of the International Conference “Days on Diffraction” (St. Petersburg, 2005), 2005, 187–199
[7] V. M. Shelkovich, “The Riemann problem admitting $\delta$-, $\delta'$-shocks, and vacuum states (the vanishing viscosity approach)”, J. Differential Equations, 231:2 (2006), 459–500 | DOI | MR | Zbl
[8] L. C. Evans, Partial differential equations, Grad. Stud. Math., 19, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[9] S. Albeverio, V. M. Shelkovich, “On the delta-shock front problem”, Analytical Approaches to Multidimensional Balance Laws, vol. 2, Nova Science Publishers, Inc., 2005, 45–88
[10] F. Bouchut, “On zero pressure gas dynamics”, Advances in Kinetic Theory and Computing, Ser. Adv. Math. Appl. Sci., 22, World Scientific, River Edge, NJ, 1994, 171–190 | MR | Zbl
[11] Gui-Qiang Chen, Hailiang Liu, “Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids”, SIAM J. Math. Anal., 34:4 (2003), 925–938 | DOI | MR | Zbl
[12] Gui-Qiang Chena, Hailiang Liu, “Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids”, Phys. D, 189:1–2 (2004), 141–165 | DOI | MR | Zbl
[13] S. Chiang, “On the interaction of $\delta$-shocks and contact vacuum states”, Z. Angew. Math. Phys., 57:6 (2006), 940–959 | DOI | MR | Zbl
[14] V. G. Danilov, V. M. Shelkovich, “Propagation and interaction of delta-shock waves of a hyperbolic system of conservation laws”, Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Ninth International Conference on Hyperbolic Problems held in CalTech (Pasadena, 2002), Springer-Verlag, Berlin, 2003, 483–492 | MR | Zbl
[15] V. G. Danilov, V. M. Shelkovich, “Propagation and interaction of $\delta$-shock waves for hyperbolic systems of conservation laws”, Dokl. Math., 69:1 (2004), 4–8 | MR | Zbl
[16] V. G. Danilov, V. M. Shelkovich, “Delta-shock wave type solution of hyperbolic systems of conservation laws”, Quart. Appl. Math., 63:3 (2005), 401–427 | MR
[17] V. G. Danilov, V. M. Shelkovich, “Dynamics of propagation and interaction of $\delta$-shock waves in conservation law systems”, J. Differential Equations, 211:2 (2005), 333–381 | DOI | MR | Zbl
[18] W. E, Yu. G. Rykov, Ya. G. Sinai,, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177:2 (1996), 349–380 | DOI | MR | Zbl
[19] G. Ercole, “Delta-shock waves as self-similar viscosity limits”, Quart. Appl. Math., 58:1 (2000), 177–199 | MR | Zbl
[20] F. Huang, “Existence and uniqueness of discontinuous solutions for a class of nonstrictly hyperbolic systems”, Advances in Nonlinear Partial Differential Equations and Related Areas (Beijing, 1997), World Scientific, River Edge, NJ, 1998, 187–208 | MR | Zbl
[21] Feiming Huang, Zhen Wang, “Well posedness for pressureless flow”, Comm. Math. Phys., 222:1 (2001), 117–146 | DOI | MR | Zbl
[22] B. L. Keyfitz, “Conservation laws, delta-shocks ans singular shocks”, Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman/CRC Res. Notes Math., 401, Chapman/CRC, Boca Raton, FL, 1999, 99–111 | MR | Zbl
[23] B. L. Keyfitz, H. C. Kranzer, “Spaces of weighted measures for conservation laws with singular shock solutions”, J. Differential Equations, 118:2 (1995), 420–451 | DOI | MR | Zbl
[24] B. L. Keyfitz, R. Sanders, M. Sever, “Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow”, Discrete Contin. Dyn. Syst. Ser. B, 3:4 (2003), 541–563 | DOI | MR | Zbl
[25] B. L. Keyfitz, M. Sever, Fu Zhang, “Viscous singular shock structure for a nonhyperbolic two-fluid model”, Nonlinearity, 17:5 (2004), 1731–1747 | DOI | MR | Zbl
[26] H. C. Kranzer, B. L. Keyfitz, “A strictly hyperbolic system of conservation laws admitting singular shocks”, Nonlinear Evolution Equations That Change Type, IMA Vol. Math. Appl., 27, Springer, New York, 1990, 107–125 | MR | Zbl
[27] P. Le Floch, “An existence and uniqueness result for two nonstrictly hyperbolic systems”, Nonlinear Evolution Equations That Change Type, IMA Vol. Math. Appl., 27, Springer, New York, 1990 | MR | Zbl
[28] M. Sever, Distribution solutions of nonlinear systems of conservation laws, Mem. Amer. Math. Soc., No 190, 2007 | MR | Zbl
[29] V. M. Shelkovich, “Delta-shock waves of a class of hyperbolic systems of conservation laws”, Patterns and Waves (St. Petersburg, July 8–13, 2002), AkademPrint, St. Petersburg, 2003, 155–168 | MR
[30] V. M. Shelkovich, A specific hyperbolic system of conservation laws admitting delta-shock wave type solutions, Preprint No 2003-059, NTNU, Trondheim, 2003
[31] V. M. Shelkovich, “Delta-shocks, the Rankine–Hugoniot conditions, and singular superposition of distributions”, Proceedings of the International Conference “Days on Diffraction” (St. Petersburg, 2004), 2004, 175–196
[32] Wancheg Sheng, Tong Zhang, The Riemann problem for the transportaion equations in gas dynamics, Mem. Amer. Math. Soc., No. 137, 1999 | MR | Zbl
[33] De Chun Tan, Tong Chang, Yu Xi Zheng, “Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws”, J. Differential Equations, 112:1 (1994), 1–32 | DOI | MR | Zbl
[34] Hanchun Yang, “Riemann problems for a class of coupled hyperbolic systems of conservation laws”, J. Differential Equations, 159:2 (1999), 447–484 | DOI | MR | Zbl
[35] J. Glimm, “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl. Math., 18:4 (1965), 697–715 | DOI | MR | Zbl
[36] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Regional Conf. Ser. Appl. Math., 11, SIAM, Philadelphia, PA, 1973 | MR | Zbl
[37] Jiequan Li, Tong Zhang, “On the initial-value problem for zero-pressure gas dynamics”, Hyperbolic Problems: Theory, Numerics, Applications (Zurich, 1998), vol. II, Internat. Ser. Numer. Math., 130, Birkhäuser, Basel, 1999, 629–640 | MR | Zbl
[38] Jiequan Li, Wei Li, “Riemann problem for the zero-pressure flow in gas dynamics”, Progr. Natur. Sci. (English Ed.), 11:5 (2001), 331–344 | MR
[39] Jiequan Li, Hanchun Yang, “Delta-shocks as limit of vanishing viscosity for multidimensional zero-pressure gas dynamics”, Quart. Appl. Math., 59:2 (2001), 315–342 | MR | Zbl
[40] Yu. G. Rykov, “The propagation of shock waves in 2-D system of pressureless gas dynamics”, Hyperbolic Problems: Theory, Numerics, Applications (Zürich, 1998), vol. II, Internat. Ser. Numer. Math., 130, Birkhäuser, Basel, 1999, 813–822 | MR | Zbl
[41] Yu. G. Rykov, “On the non-Hamiltonian character of shocks in 2-D pressureless gas”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5:1 (2002), 55–78 | MR | Zbl
[42] M. Sever, “An existence theorem in the large for zero-pressure gas dynamics”, Differential Integral Equations, 14:9 (2001), 1077–1092 | MR | Zbl
[43] Hanchun Yang, “Generalized plane delta-shock waves for $n$-dimensional zero-pressure gas dynamics”, J. Math. Anal. Appl., 260:1 (2001), 18–35 | DOI | MR | Zbl
[44] A. I. Vol'pert, “The spaces $BV$ and quasilinear equations”, Math. USSR-Sb., 2:2 (1967), 225–267 | DOI | MR | Zbl
[45] G. Dal Maso, P. G. Le Floch, F. Murat, “Definition and weak stability of nonconservative products”, J. Math. Pures Appl. (9), 74:6 (1995), 483–548 | MR | Zbl
[46] P. Le Floch, “Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form”, Comm. Partial Differential Equations, 13:6 (1988), 669–727 | DOI | MR | Zbl
[47] J.-F. Colombeau, Elementary introduction to new generalized functions, North-Holland Math. Stud. 113, Notes on Pure Mathematics, 103, North-Holland, Amsterdam, 1985 | MR | Zbl
[48] J.-F. Colombeau, “Multiplication of distributions”, Bull. Amer. Math. Soc., 23:2 (1990), 251–268 | DOI | MR | Zbl
[49] S. Schecter, “Existence of Dafermos profiles for singular shocks”, J. Differential Equations, 205:1 (2004), 185–210 | DOI | MR | Zbl
[50] D. G. Schaeffer, S. Schecter, M. Shearer, “Nonstrictly hyperbolic conservation laws with a parabolic line”, J. Differential Equations, 103:1 (1993), 94–126 | DOI | MR | Zbl
[51] M. Sever, “Viscous structure of singular shocks”, Nonlinearity, 15:3 (2002), 705–725 | DOI | MR | Zbl
[52] V. M. Shelkovich, “On delta-shocks and singular shocks”, Hyperbolic Problems. Theory, Numerics and Applications. Proceedings of the 11th International Conference on Hyperbolic Problems (Lyon, 2006), eds. S. Benzoni-Gavage et al., Springer, Berlin, 2008, 971–979 | Zbl
[53] R. J. DiPerna, “Measure-valued solutions to conservation laws”, Arch. Ration Mech. Anal., 88:3 (1985), 223–270 | DOI | MR | Zbl
[54] M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer, Geometric theory of generalized functions with applications to general relativity, Math. Appl., 537, Kluwer Acad. Publ., Dordrecht, 2001 | MR | Zbl
[55] M. Oberguggenberger, Multiplication of distributions and applications to partial differential equations, Pitman Res. Notes Math. Ser., 259, Longman, Harlow; Wiley, New York, 1992 | MR | Zbl
[56] M. Oberguggenberger, “Generalizef functions in nonlinear models – a survey”, Proceedings of the Third World Congress of Nonlinear Analysts, Part 8 (Catania, 2000), Nonlinear Anal., 47:8 (2001), 5029–5040 | DOI | MR | Zbl
[57] Jiaxin Hu, “The Riemann problem for pressureless fluid dynamics with distributional solutions in Colombeau's sense”, Comm. Math. Phys., 194:1 (1998), 191–205 | DOI | MR | Zbl
[58] K. T. Joseph, “Explicit generalized solutions to a system of conservation laws”, Proc. Indian Acad. Sci. Math. Sci., 109:4 (1999), 401–409 | DOI | MR | Zbl
[59] L. Schwartz, “Sur l'impossibilité de la multiplication des distributions”, C. R. Acad. Sci. Paris, 239 (1954), 847–848 | MR | Zbl
[60] V. M. Shelkovich, “New versions of the Colombeau algebras”, Math. Nachr., 278:11 (2005), 1318–1340 | DOI | MR | Zbl
[61] V. M. Shelkovich, “The Colombeau algebra and an algebra of asymptotical distributions”, Proceedings of the International Conference on Generalized Functions (University of French West Indies, 2000), Cambridge Scientific Publishers, 2004, 317–328
[62] V. M. Shelkovich, “Colombeau generalized functions: A theory based on harmonic regularizations”, Math. Notes, 63:2 (1998), 275–279 | DOI | MR | Zbl
[63] V. G. Danilov, V. M. Shelkovich, “Propagation and interaction of nonlinear waves to quasilinear equations”, Hyperbolic Problems: Theory, Numerics, Applications, vol. I (Magdeburg, 2000), Internat. Ser. Numer. Math., 140, Birkhäuser, Basel, 2001, 267–276 | MR
[64] V. G. Danilov, V. M. Shelkovich, “Propagation and interaction of shock waves of quasilinear equation”, Nonlinear Stud., 8:1 (2001), 135–169 | MR | Zbl
[65] V. G. Danilov, G. A. Omel'yanov, V. M. Shelkovich, “Weak asymptotics method and interaction of nonlinear waves”, Asymptotic methods for wave and quantum problems, Amer. Math. Soc. Transl. Ser. 2, 208, Amer. Math. Soc., Providence, RI, 2003, 33–165 | MR | Zbl
[66] M. G. García-Alvarado, R. Flores-Espinoza, G. A. Omel'yanov, “Interaction of shock waves in gas dynamics: uniform in time asymptotics”, Int. J. Math. Math. Sci., 19 (2005), 3111–3126 | DOI | MR | Zbl
[67] R. Flores-Espinoza, G. A. Omel'yanov, “Asymptotic behavior for the centered-rarefaction appearence problem”, Electron. J. Differ. Equ., 2005, no. 148, 1–25 | MR | Zbl
[68] V. G. Danilov, D. Mitrovic, “Weak asymptotics of shock wave formation process”, Nonlinear Anal., 61:4 (2005), 613–635 | DOI | MR | Zbl
[69] V. G. Danilov, D. Mitrovic, Delta shock wave formation in the case of triangular hyperbolic system of conservation laws, Preprint No 2006-057, NTNU, Trondheim, 2006; ; Z. Differential Equation (to appear) arXiv: math/0612763
[70] V. G. Danilov, “On singularities of continuity equation solutions”, Nonlinear Anal., 68:6 (2008), 1640–1651 | DOI | MR | Zbl
[71] A. Majda, “The stability of multidimensional shock fronts”, Mem. Amer. Math. Soc., 41:275 (1983) | MR | Zbl
[72] A. Majda, “The existence of multidimensional shock fronts”, Mem. Amer. Math. Soc., 43:281 (1983) | MR | Zbl
[73] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sci., 53, Springer-Verlag, New York, 1984 | MR | Zbl
[74] Tai-Ping Liu, Zhou Ping Xin, “Overcompressive shock waves”, Nonlinear Evolution Equations That Change Type, IMA Vol. Math. Appl., 27, Springer, New York, 1990, 139–145 | MR | Zbl
[75] S. F. Shandarin, Ya. B. Zeldovich, “The large-scale structure of the universe: turbulence, intermittence, structures in self-gravitating medium”, Rev. Modern Phys., 61:2 (1989), 185–220 | DOI | MR
[76] Ya. B. Zeldovich, “Gravitational instability: An approximate theory for large density perturbations”, Astronom. Astrophys., 5 (1970), 84–89
[77] S. Albeverio, S. A. Molchanov, D. Surgailis, “Stratified structure of the Universe and the Burgers' equation – a probabilistic approach”, Probab. Theory Related Fields, 100:4 (1994), 457–484 | DOI | MR | Zbl
[78] A. N. Kraiko, S. M. Sulaimanova, “Two-fluid flows of a mixture of a gas and solid particles with ‘films’ and ‘filaments’ appearing in flows past impermeable surfaces”, J. Appl. Math. Mech., 47:4 (1983), 507–516 | DOI | Zbl
[79] A. N. Kraiko, “The two-fluid model of flow of gas with particles dispersed in it”, J. Appl. Math. Mech., 46:1 (1983), 75–82 | DOI | Zbl
[80] A. N. Osiptsov, “Investigation of regions of unbounded growth of the particle concentration in disperse flows”, Fluid Dynam., 19 (1984), 378–385 | DOI | Zbl
[81] A. N. Osiptsov, “Modified Lagrangian method for calculating the particle concentration in dusty-gas flows with intersecting particle trajectories”, Proceedings of the 3 International Conference on Multiphase Flows (Lyon, 1998), 1998
[82] A. N. Osiptsov, “Lagrangian modeling of dust admixture in gas flows”, Astrophys. Space Sci. Lib., 274:1–2 (2000), 377–386 | DOI | Zbl
[83] F. Berthelin, P. Degond, M. Delitala, M. Rascle, “A model for the formation and evolution of traffic jams”, Arch. Ration. Mech. Anal., 187:2 (2008), 185–220 | DOI | MR | Zbl
[84] M. Mazzotti, “Local equilibrium theory for the binary chromatography of species subject to a generalized Langmuir isotherm”, Ind. Eng. Chem. Res., 45:15 (2006), 5332–5350 | DOI
[85] M. Mazzotti, “Occurrence of a delta-shock in non-linear chromatography”, 6th International Congress on Industrial and Applied Mathematics (Zurich, 2007), 2007
[86] I. Fouxon, B. Meerson, M. Assaf, E. Livne, “Formation and evolution of density singularities in hydrodynamics of inelastic gases”, Phys. Rev. E, 75:5 (2007), 050301(R) | DOI
[87] V. M. Shelkovich, “Validity and naturalness of definitions of $\delta$- and $\delta'$-shock type solutions to systems of conservation laws”, Proceedings of the International Conference “Days on Diffraction” (St. Petersburg, 2006), 2006, 266–279
[88] A. Yu. Khrennikov, V. M. Shelkovich, “On the algebraic aspect of singular solutions to conservation laws systems”, Mathematical Modelling of Wave Phenomena: 2nd Conference on Mathematical Modelling of Wave Phenomena (Växjö, Sweden, 2005), AIP Conference Proceedings, 834, no. 1, 2006, 206–213 | DOI
[89] F. Poupaud, “Global smooth solutions of some quasi-linear hyperbolic systems with large data”, Ann. Fac. Sci. Toulouse Math. (6), 8:4 (1999), 649–659 | MR | Zbl
[90] R. P. Kanwal, Generalized Functions: Theory and technique, Birkhäuser, Boston, MA, 1998 | MR | Zbl
[91] I. M. Gel'fand, G. E. Shilov, Generalized functions. I: Properties and operations, Academic Press, New York–London, 1964 | MR | MR | Zbl | Zbl
[92] V. M. Shelkovich, “The Rankine–Hugoniot conditions and balance laws for $\delta$-shock waves”, J. Math. Sci., 151:1 (2008), 2781–2792 | DOI | MR
[93] D. E. Betounes, “Dirac tensor distributions for moving submanifolds of $\mathbb{R}^n$”, J. Math. Phys., 24:11 (1983), 2566–2572 | DOI | MR | Zbl
[94] D. E. Betounes, “Nonclassical fields with singularities on the moving surface”, J. Math. Phys., 23:12 (1982), 2304–2311 | DOI | MR
[95] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979 | MR | MR | Zbl | Zbl
[96] I. S. Aranson, L. S. Tsimring, “Patterns and collective behavior in granular media: Theoretical concepts”, Rev. Modern Phys., 78:2 (2006), 641–692 | DOI
[97] B. Meerson, “Nonlinear dynamics of radiative condensations in optically thin plasmas”, Rev. Modern Phys., 68:1 (1996), 215–257 | DOI
[98] I. Fouxon, B. Meerson, M. Assaf, E. Livne, “Formation of density singularities in ideal hydrodynamics of freely cooling inelastic gases: a family of exact solutions”, Phys. Fluids, 19 (2007), 093303 ; arXiv: 0704.084 | DOI
[99] D. A. Drew, S. L. Passman, Theory of multicomponent fluids, Appl. Math. Sci., 135, Springer, New York, 1999 | DOI | MR | Zbl