Essays on the theory of elliptic hypergeometric functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 3, pp. 405-472

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a brief survey of the main results of the theory of elliptic hypergeometric functions — a new class of special functions of mathematical physics. A proof is given of the most general known univariate exact integration formula generalizing Euler's beta integral. It is called the elliptic beta integral. An elliptic analogue of the Gauss hypergeometric function is constructed together with the elliptic hypergeometric equation for it. Biorthogonality relations for this function and its particular subcases are described. The known elliptic beta integrals on root systems are listed, and symmetry transformations are considered for the corresponding higher-order elliptic hypergeometric functions.
@article{RM_2008_63_3_a0,
     author = {V. P. Spiridonov},
     title = {Essays on the theory of elliptic hypergeometric functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {405--472},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_3_a0/}
}
TY  - JOUR
AU  - V. P. Spiridonov
TI  - Essays on the theory of elliptic hypergeometric functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 405
EP  - 472
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_3_a0/
LA  - en
ID  - RM_2008_63_3_a0
ER  - 
%0 Journal Article
%A V. P. Spiridonov
%T Essays on the theory of elliptic hypergeometric functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 405-472
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2008_63_3_a0/
%G en
%F RM_2008_63_3_a0
V. P. Spiridonov. Essays on the theory of elliptic hypergeometric functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 3, pp. 405-472. http://geodesic.mathdoc.fr/item/RM_2008_63_3_a0/