@article{RM_2008_63_3_a0,
author = {V. P. Spiridonov},
title = {Essays on the theory of elliptic hypergeometric functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {405--472},
year = {2008},
volume = {63},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_3_a0/}
}
V. P. Spiridonov. Essays on the theory of elliptic hypergeometric functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 3, pp. 405-472. http://geodesic.mathdoc.fr/item/RM_2008_63_3_a0/
[1] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[2] I. M. Gel'fand, M. I. Graev, V. S. Retakh, “General hypergeometric systems of equations and series of hypergeometric type”, Russian Math. Surveys, 47:4 (1992), 1–88 | DOI | MR | Zbl
[3] G. Gasper, M. Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., 96, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[4] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantum inverse problem method. I”, Theoret. Math. Phys., 40:2 (1979), 688–706 | DOI | MR
[5] L. A. Takhtadzhan, L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg $XYZ$ model”, Russian Math. Surveys, 34:5 (1979), 11–68 | DOI | MR
[6] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Physics, 70:1 (1972), 193–228 | DOI | MR | Zbl
[7] E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado, “Exactly solvable SOS models, II. Proof of the star-triangle relation and combinatorial identities”, Conformal field theory and solvable lattice models (Kyoto, 1986), Adv. Stud. Pure Math., 16, Academic Press, Boston, MA, 1988, 17–122 | MR | Zbl
[8] I. B. Frenkel, V. G. Turaev, “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand mathematical seminars, Birkhäuser, Boston, MA, 1997, 171–204 | MR | Zbl
[9] V. P. Spiridonov, A. S. Zhedanov, “Spectral transformation chains and some new biorthogonal rational functions”, Comm. Math. Phys., 210:1 (2000), 49–83 | DOI | MR | Zbl
[10] V. P. Spiridonov, “Theta hypergeometric series”, Asymptotic combinatorics with application to mathematical physics (St. Petersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer, Dordrecht, 2002, 307–327 ; arXiv: math/0303204 | MR | Zbl
[11] V. P. Spiridonov, “Theta hypergeometric integrals”, Algebra i analiz, 15:6 (2003), 161–215 ; V. P. Spiridonov, “Theta hypergeometric integrals”, St. Petersburg Math. J., 15:6 (2004), 929–967 ; arXiv: math/0303205 | MR | Zbl | DOI
[12] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. I, McGraw-Hill, New York–Toronto–London, 1953 | MR | Zbl | Zbl
[13] E. W. Barnes, “On the theory of the multiple gamma function”, Cambr. Trans., 19 (1904), 374–425 | Zbl
[14] F. H. Jackson, “The basic gamma-function and the elliptic functions”, Proc. Roy. Soc. Lond. Ser. A, 76:508 (1905), 127–144 | DOI | Zbl
[15] T. Shintani, “On a Kronecker limit formula for real quadratic field”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24:1 (1977), 167–199 | MR | Zbl
[16] N. Kurokawa, “Multiple sine functions and Selberg zeta functions”, Proc. Japan Acad. Ser. A Math. Sci., 67:3 (1991), 61–64 | DOI | MR | Zbl
[17] L. D. Faddeev, “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254 | DOI | MR | Zbl
[18] S. N. M. Ruijsenaars, “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38:2 (1997), 1069–1146 | DOI | MR | Zbl
[19] M. Jimbo, T. Miwa, “Quantum KZ equation with $|q|=1$ and correlation functions of the $XXZ$ model in the gapless regime”, J. Phys. A, 29:12 (1996), 2923–2958 | DOI | MR | Zbl
[20] V. Tarasov, A. Varchenko, “Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups”, Astérisque, 1997, no. 246, 1–135 ; arXiv: q-alg/9703044 | MR | Zbl
[21] L. D. Faddeev, R. M. Kashaev, A. Yu. Volkov, “Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality”, Commun. Math. Phys., 219:1 (2001), 199–219 | DOI | MR | Zbl
[22] B. Ponsot, J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of $U_q(sl(2,\mathbb{R}))$”, Comm. Math. Phys., 224:3 (2001), 613–655 | DOI | MR | Zbl
[23] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, “Unitary representations of $U_q\bigl(sl(2,\mathbb R)\bigr)$, the modular double and the multiparticle $q$-deformed Toda chains”, Comm. Math. Phys., 225:3 (2002), 573–609 | DOI | MR | Zbl
[24] A. Yu. Volkov, “Noncommutative hypergeometry”, Comm. Math. Phys., 258:2 (2005), 257–273 | DOI | MR | Zbl
[25] G. Felder, A. Varchenko, “The elliptic gamma function and $SL(3,\mathbb Z)\ltimes\mathbb Z^3$”, Adv. Math., 156:1 (2000), 44–76 | DOI | MR | Zbl
[26] E. Friedman, S. Ruijsenaars, “Shintani–Barnes zeta and gamma functions”, Adv. Math., 187:2 (2004), 362–395 | DOI | MR | Zbl
[27] A. Narukawa, “The modular properties and the integral representations of the multiple elliptic gamma functions”, Adv. Math., 189:2 (2004), 247–267 | DOI | MR | Zbl
[28] E. M. Rains, “Limits of elliptic hypergeometric integrals”, Ramanujan J., to appear; , 2006 arXiv: math/0607093
[29] V. P. Spiridonov, “On the elliptic beta function”, Russian Math. Surveys, 56:1 (2001), 185–186 | DOI | MR | Zbl
[30] V. P. Spiridonov, “A Bailey tree for integrals”, Theoret. and Math. Phys., 139:1 (2004), 536–541 | DOI | MR
[31] V. P. Spiridonov, Ellipticheskie gipergeometricheskie funktsii, Dis. $\dots$ dokt. fiz.-matem. nauk, LTF OIYaI, Dubna, 2004
[32] J. F. van Diejen, V. P. Spiridonov, “An elliptic Macdonald–Morris conjecture and multiple modular hypergeometric sums”, Math. Res. Lett., 7:5–6 (2000), 729–746 | MR | Zbl
[33] J. F. van Diejen, V. P. Spiridonov, “Elliptic Selberg integrals”, Internat. Math. Res. Notices, 2001, no. 20, 1083–1110 | DOI | MR | Zbl
[34] E. M. Rains, “Transformations of elliptic hypergeometric integrals”, Ann. of Math. (to appear)
[35] E. M. Rains, “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135:1 (2006), 99–180 | DOI | MR | Zbl
[36] V. P. Spiridonov, S. O. Warnaar, “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207:1 (2006), 91–132 | DOI | MR | Zbl
[37] S. N. M. Ruijsenaars, “On Barnes' multiple zeta and gamma functions”, Adv. Math., 156:1 (2000), 107–132 | DOI | MR | Zbl
[38] J. F. van Diejen, V. P. Spiridonov, “Unit circle elliptic beta integrals”, Ramanujan J., 10:2 (2005), 187–204 | DOI | MR | Zbl
[39] M. Rahman, “An integral representation of a ${}_{10}\phi_9$ and continuous bi-orthogonal ${}_{10}\phi_9$ rational functions”, Canad. J. Math., 38:3 (1986), 605–618 | MR | Zbl
[40] B. Nassrallah, M. Rahman, “Projection formulas, a reproducing kernel and a generating function for $q$-Wilson polynomials”, SIAM J. Math. Anal., 16:1 (1985), 186–197 | DOI | MR | Zbl
[41] R. Askey, J. Wilson, “Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials”, Mem. Amer. Math. Soc., 54:319 (1985) | MR | Zbl
[42] R. Askey, “Beta integrals in Ramanujan's papers, his unpublished work and further examples”, Ramanujan revisited (Urbana-Champaign, IL, 1987), Academic Press, Boston, MA, 1988, 561–590 | MR | Zbl
[43] V. P. Spiridonov, “Short proofs of the elliptic beta integrals”, Ramanujan J., 13:1–3 (2007), 265–283 ; arXiv: math/0408369 | DOI | MR | Zbl
[44] H. S. Wilf, D. Zeilberger, “An algorithmic proof theory for hypergeometric (ordinary and "$q$") multisum/integral identities”, Invent. Math., 108:3 (1992), 575–633 | DOI | MR | Zbl
[45] H. Rosengren, “A proof of a multivariable elliptic summation formula conjectured by Warnaar”, $q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001, 193–202 ; arXiv: math/0101073 | MR | Zbl
[46] V. P. Spiridonov, A. S. Zhedanov, “To the theory of biorthogonal rational functions”, Sūrikaisekikenkyūsho Kōkyūroku, 2003, no. 1302, 172–192 | MR
[47] M. Schlosser, “Elliptic enumeration of nonintersecting lattice paths”, J. Combin. Theory Ser. A, 114:3 (2007), 505–521 | DOI | MR | Zbl
[48] M. Schlosser, A Taylor expansion theorem for an elliptic extension of the Askey–Wilson operator, arXiv: 0803.2329
[49] W. Chu, C. Jia, “Abel's method on summation by parts and theta hypergeometric series”, J. Combin. Theory Ser. A (to appear)
[50] J. V. Stokman, “Hyperbolic beta integrals”, Adv. Math., 190:1 (2005), 119–160 | DOI | MR | Zbl
[51] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl
[52] V. P. Spiridonov, “An elliptic incarnation of the Bailey chain”, Int. Math. Res. Not., 2002, no. 37, 1945–1977 | DOI | MR | Zbl
[53] S. O. Warnaar, “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18:4 (2002), 479–502 | DOI | MR | Zbl
[54] S. O. Warnaar, “Summation formulae for elliptic hypergeometric series”, Proc. Amer. Math. Soc., 133:2 (2005), 519–527 | DOI | MR | Zbl
[55] G. Gasper, M. Schlosser, “Summation, transformation, and expansion formulas for multibasic theta hypergeometric series”, Adv. Stud. Contemp. Math. (Kyungshang), 11:1 (2005), 67–84 ; arXiv: math/0505215 | MR | Zbl
[56] H. Rosengren, M. Schlosser, “On Warnaar's elliptic matrix inversion and Karlsson–Minton-type elliptic hypergeometric series”, J. Comput. Appl. Math., 178:1–2 (2005), 377–391 | DOI | MR | Zbl
[57] A. Zhedanov, Elliptic polynomials orthogonal on the unit circle with a dense point spectrum, arXiv: 0711.4696
[58] V. P. Spiridonov, “Elliptic hypergeometric functions and Calogero–Sutherland-type models”, Theoret. Math. Phys., 150:2 (2007), 266–277 | DOI | MR | Zbl
[59] E. M. Rains, V. P. Spiridonov, Determinants of elliptic hypergeometric integrals, arXiv: 0712.4253
[60] S. N. M. Ruijsenaars, “Generalized hypergeometric function satisfying four analytic difference equations of Askey–Wilson type”, Comm. Math. Phys., 206:3 (1999), 639–690 | DOI | MR | Zbl
[61] F. J. van de Bult, E. M. Rains, J. V. Stokman, “Properties of generalized univariate hypergeometric functions”, Comm. Math. Phys., 275:1 (2007), 37–95 ; arXiv: math/0607250 | DOI | MR | Zbl
[62] J. F. van Diejen, “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35:6 (1994), 2983–3004 | DOI | MR | Zbl
[63] Y. Komori, K. Hikami, “Quantum integrability of the generalized elliptic Ruijsenaars models”, J. Phys. A, 30:12 (1997), 4341–4364 | DOI | MR | Zbl
[64] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Comm. Math. Phys., 110:2 (1987), 191–213 | DOI | MR | Zbl
[65] V. I. Inozemtsev, “Lax representation with spectral parameter on a torus for integrable particle systems”, Lett. Math. Phys., 17:1 (1989), 11–17 | DOI | MR | Zbl
[66] G. E. Andrews, “Bailey's transform, lemma, chains and tree”, Special functions 2000: current perspective and future directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer, Dordrecht, 2001, 1–22 | MR | Zbl
[67] S. O. Warnaar, “Extensions of the well-poised and elliptic well-poised Bailey lemma”, Indag. Math. (N.S.), 14:3–4 (2003), 571–588 | DOI | MR | Zbl
[68] D. M. Bressoud, “A matrix inverse”, Proc. Amer. Math. Soc., 88:3 (1983), 446–448 | DOI | MR | Zbl
[69] X. R. Ma, “An extension of Warnaar's matrix inversion”, Proc. Amer. Math. Soc., 133:11 (2005), 3179–3189 | DOI | MR | Zbl
[70] A. Zhedanov, “Biorthogonal rational functions and the generalized eigenvalue problem”, J. Approx. Theory, 101:2 (1999), 303–329 | DOI | MR | Zbl
[71] M. E. H. Ismail, D. R. Masson, “Generalized orthogonality and continued fractions”, J. Approx. Theory, 83:1 (1995), 1–40 | DOI | MR | Zbl
[72] A. A. Gonchar, “On the speed of rational approximation of some analytic functions”, Math. USSR-Sb., 34:2 (1978), 131–145 | DOI | MR | Zbl | Zbl
[73] A. A. Gonchar, G. López Lagomasino, “On Markov's theorem for multipoint Padé approximants”, Math. USSR-Sb., 34:4 (1978), 449–459 | DOI | MR | Zbl
[74] V. P. Spiridonov, A. S. Zhedanov, “Classical biorthogonal rational functions on elliptic grids”, C. R. Math. Acad. Sci. Soc. R. Can., 22:2 (2000), 70–76 | MR | Zbl
[75] J. A. Wilson, “Orthogonal functions from Gram determinants”, SIAM J. Math. Anal., 22:4 (1991), 1147–1155 | DOI | MR | Zbl
[76] H. Rosengren, “An elementary approach to $6j$-symbols (classical, quantum, rational, trigonometric, and elliptic)”, Ramanujan J., 13:1–3 (2007), 131–166 | DOI | MR | Zbl
[77] D. P. Gupta, D. R. Masson, “Contiguous relations, continued fractions and orthogonality”, Trans. Amer. Math. Soc., 350:2 (1998), 769–808 | DOI | MR | Zbl
[78] D. P. Gupta, D. R. Masson, “Watson's basic analogue of Ramanujan's entry 40 and its generalization”, SIAM J. Math. Anal., 25:2 (1994), 429–440 | DOI | MR | Zbl
[79] V. P. Spiridonov, “Nepreryvnaya biortogonalnost ellipticheskoi gipergeometricheskoi funktsii”, Algebra i analiz, 20:5 (2008), 155–185 ; arXiv: 0801.4137 | MR
[80] H. Rosengren, “Sklyanin invariant integration”, Int. Math. Res. Not., 2004, no. 60, 3207–3232 ; arXiv: math/0405072 | DOI | MR | Zbl
[81] E. K. Sklyanin, “Some algebraic structures connected with the Yang–Baxter equation”, Funct. Anal. Appl., 16:4 (1982), 263–270 | DOI | MR | Zbl
[82] E. K. Sklyanin, “Some algebraic structures connected with the Yang–Baxter equation. Representations of quantum algebras”, Funct. Anal. Appl., 17:4 (1983), 273–284 | DOI | MR | Zbl
[83] Yu. I. Manin, “Sixth Painlevé equation, universal elliptic curve, and mirror of $P^2$”, Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, 186, Amer. Math. Soc., Providence, RI, 1998, 131–151 | MR | Zbl
[84] L. D. Faddeev, “Modular double of a quantum group”, Conférence Moshé Flato, vol. I (Dijon, 1999), Math. Phys. Stud., 21, Kluwer, Dordrecht, 2000, 149–156 | MR | Zbl
[85] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press., Cambridge, 1915 | MR | Zbl
[86] H. Rosengren, “Elliptic hypergeometric series on root systems”, Adv. Math., 181:2 (2004), 417–447 | DOI | MR | Zbl
[87] R. A. Gustafson, “Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$”, SIAM J. Math. Anal., 18:6 (1987), 1576–1596 | DOI | MR | Zbl
[88] C. Krattenthaler, “The major counting of nonintersecting lattice paths and generating functions for tableaux”, Mem. Amer. Math. Soc., 115:552 (1995) | MR | Zbl
[89] Y. Kajihara, M. Noumi, “Multiple elliptic hypergeometric series. An approach from the Cauchy determinant”, Indag. Math. (N.S.), 14:3–4 (2003), 395–421 | DOI | MR | Zbl
[90] H. Rosengren, M. Schlosser, “Summations and transformations for multiple basic and elliptic hypergeometric series by determinant evaluations”, Indag. Math. (N.S.), 14:3–4 (2003), 483–513 | DOI | MR | Zbl
[91] E. M. Rains, “Recurrences for elliptic hypergeometric integrals”, Rokko Lect. Math., 18 (2005), 183–199; arXiv: math/0504285
[92] H. Rosengren, M. Schlosser, “Elliptic determinant evaluations and the Macdonald identities for affine root systems”, Compos. Math., 142:4 (2006), 937–961 | DOI | MR | Zbl
[93] H. Rosengren, “Sums of triangular numbers from the Frobenius determinant”, Adv. Math., 208:2 (2007), 935–961 | DOI | MR | Zbl
[94] H. Rosengren, An Izergin–Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices, arXiv: 0801.1229
[95] R. A. Gustafson, “Some $q$-beta and Mellin–Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23:2 (1992), 525–551 | DOI | MR | Zbl
[96] R. A. Gustafson, “Some $q$-beta integrals on $SU(n)$ and $Sp(n)$ that generalize the Askey–Wilson and Nassrallah–Rahman integrals”, SIAM J. Math. Anal., 25:2 (1994), 441–449 | DOI | MR | Zbl
[97] P. J. Forrester, S. O. Warnaar, “The importance of the Selberg integral”, Bull. Amer. Math. Soc. (N.S.), to appear
[98] I. G. Macdonald, “Constant term identities, orthogonal polynomials, and affine Hecke algebras”, Proceedings of the International Congress of Mathematicians Vol. I (Berlin, 1998), Doc. Math., 1998 Extra Vol. I, 303–317 (electronic) | MR | Zbl
[99] G. W. Anderson, “A short proof of Selberg's generalized beta formula”, Forum Math., 3:4 (1991), 415–417 | MR | Zbl
[100] R. A. Gustafson, M. A. Rakha, “$q$-Beta integrals and multivariate basic hypergeometric series associated to root systems of type $A_m$”, Ann. Comb., 4:3–4 (2000), 347–373 | DOI | MR | Zbl
[101] J. F. van Diejen, V. P. Spiridonov, “Modular hypergeometric residue sums of elliptic Selberg integrals”, Lett. Math. Phys., 58:3 (2001), 223–238 | DOI | MR | Zbl
[102] H. Coskun, R. A. Gustafson, “Well-poised Macdonald functions $W_{\lambda}$ and Jackson coefficients $\omega_{\lambda}$ on $BC_n$”, Jack, Hall–Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 127–155 | MR | Zbl
[103] R. Y. Denis, R. A. Gustafson, “An $SU(n)$ $q$-beta integral transformation and multiple hypergeometric series identities”, SIAM J. Math. Anal., 23:2 (1992), 552–561 | DOI | MR | Zbl
[104] S. C. Milne, “Multiple $q$-series and $U(n)$ generalizations of Ramanujan's $_1\Psi_1$ sum”, Ramanujan revisited (Urbana-Champaign, IL, 1987), Academic Press, Boston, MA, 1988, 473–524 | MR | Zbl
[105] A. L. Dixon, “Generalisations of Legendre's formula $KE'-(K-E)K'=\frac12\pi$”, Proc. London Math. Soc., 2:1 (1905), 206–224 | DOI | Zbl
[106] V. P. Spiridonov, A. S. Zhedanov, “Elliptic grids, rational functions, and the Padé interpolation”, Ramanujan J., 13:1–3 (2007), 285–310 | DOI | MR | Zbl
[107] A. Zhedanov, “Padé interpolation table and biorthogonal rational functions”, Rokko Lect. Math., 18 (2005), 323–363
[108] T. H. Koornwinder, “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | MR | Zbl
[109] A. Okounkov, “$BC$-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials”, Transform. Groups, 3:2 (1998), 181–207 | DOI | MR | Zbl
[110] G. Felder, A. Varchenko, “Hypergeometric theta functions and elliptic Macdonald polynomials”, Int. Math. Res. Not., 2004, no. 21, 1037–1055 | DOI | MR | Zbl
[111] H. Sakai, “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220:1 (2001), 165–229 | DOI | MR | Zbl
[112] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada, “${}_{10}E_9$ solution to the elliptic Painlevé equation”, J. Phys. A, 36:17 (2003), L263–L272 | DOI | MR | Zbl
[113] M. Ito, “Askey–Wilson type integrals associated with root systems”, Ramanujan J., 12:1 (2006), 131–151 | DOI | MR | Zbl
[114] M. E. H. Ismail, M. Rahman, “The associated Askey–Wilson polynomials”, Trans. Amer. Math. Soc., 328:1 (1991), 201–237 | DOI | MR | Zbl
[115] V. P. Spiridonov, “A multiparameter summation formula for Riemann theta functions”, Jack, Hall–Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 345–353 | MR | Zbl
[116] H. Konno, “The vertex-face correspondence and the elliptic $6j$-symbols”, Lett. Math. Phys., 72:3 (2005), 243–258 ; arXiv: math/0503725 | DOI | MR | Zbl
[117] N. I. Akhiezer, Elements of the theory of elliptic functions, Transl. Math. Monogr., 79, Amer. Math. Soc., Providence, RI, 1990 | MR | MR | Zbl
[118] M. Eichler, D. Zagier, The theory of Jacobi forms, Progr. Math., 55, Birkhäuser, Boston, MA, 1985 | MR | Zbl