Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 283-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to a study of problems involving the propagation of one-dimensional non-linear waves of small amplitude in elastic media, using analytic and numerical methods. The equations of non-linear elasticity theory belong to the class of hyperbolic systems expressing conservation laws. For the unique construction of solutions it is necessary to supplement these equations with terms that make it possible to adequately describe actual small-scale phenomena, including the structure of the discontinuities that arise. The behaviour of non-linear waves is considered in two cases: when the small-scale processes are conditioned by viscosity, and when dispersion plays an essential role in addition to viscosity.
@article{RM_2008_63_2_a3,
     author = {A. G. Kulikovskii and A. P. Chugainova},
     title = {Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {283--350},
     year = {2008},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_2_a3/}
}
TY  - JOUR
AU  - A. G. Kulikovskii
AU  - A. P. Chugainova
TI  - Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 283
EP  - 350
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_2_a3/
LA  - en
ID  - RM_2008_63_2_a3
ER  - 
%0 Journal Article
%A A. G. Kulikovskii
%A A. P. Chugainova
%T Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 283-350
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2008_63_2_a3/
%G en
%F RM_2008_63_2_a3
A. G. Kulikovskii; A. P. Chugainova. Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 283-350. http://geodesic.mathdoc.fr/item/RM_2008_63_2_a3/

[1] G. Ya. Galin, “Shock waves in media described by an arbitrary equation of state”, Soviet Phys. Dokl., 3 (1958), 244–247 | MR | Zbl

[2] O. A. Olejnik, “Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation”, Amer. Math. Soc. Transl. (2), 33 (1963), 285–290 | MR | Zbl

[3] I. M. Gel'fand, “Some problems in the theory of quasilinear equations”, Amer. Math. Soc. Transl. (2), 29 (1963), 295–381 | MR | MR | Zbl | Zbl

[4] G. Ya. Galin, “A theory of shock waves”, Soviet Phys. Dokl., 4 (1960), 757–760 | MR | Zbl

[5] S. K. Godunov, “On nonunique “blurring” of discontinuities in solutions of quasilinear systems”, Soviet Math. Dokl., 2 (1961), 43–44 | MR | Zbl

[6] V. F. D'yachenko, “Cauchy's problem for quasi-linear systems”, Soviet Math. Dokl., 2 (1961), 7–8 | MR | Zbl

[7] N. D. Vvedenskaya, “An example of nonuniqueness of a generalized solution of a quasi-linear system of equations”, Soviet Math. Dokl., 2 (1961), 89–90 | MR | Zbl

[8] Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, The mathematical theory of combustion and explosions, Consultants Bureau (Plenum), New York, 1985 | MR | MR

[9] A. A. Barmin; A. G. Kulikovskii, “Shock waves of ionized gases in an electromagnetic field”, Soviet Phys. Dokl., 13 (1968), 4–7

[10] A. G. Kulikovskii, “Surfaces of discontinuity separating two perfect media of different properties. Recombination waves in magnetohydrodynamics”, J. Appl. Math. Mech., 32:6 (1968), 1145–1152 | DOI | Zbl

[11] L. I. Sedov, V. P. Korobejnikov, V. V. Markov, “The theory of propagation of blast waves”, Proc. Steklov Inst. Math., 175 (1988), 187–228 | MR | Zbl

[12] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, “Nonlinear wave processes in the initiation and propagation of gaseous detonation”, Proc. Steklov Inst. Math., 251 (2005), 192–205 | MR | Zbl

[13] G. B. Whitham, Linear and nonlinear waves, Pure Appl. Math., Wiley, New York–London–Sydney, 1974 | MR | Zbl

[14] A. A. Barmin, V. S. Uspenskii, “Development of pulsation regimes in one-dimensional unsteady MHD flows with switching off of the electrical conductivity”, Fluid Dynamics, 21:4 (1986), 604–610 | DOI

[15] I. B. Bakholdin, Bezdissipativnye razryvy v mekhanike sploshnoi sredy, Fizmatlit, M., 2004

[16] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau (Plenum), New York, 1984 | MR | MR | Zbl | Zbl

[17] A. T. Ilichev, Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003

[18] V. I. Karpman, Non-linear waves in dispersive media, International Series of Monographs in Natural Philosophy, 71, Pergamon Press, Oxford–New York–Toronto, ON, 1975 | MR | MR

[19] L. I. Sedov, Mechanics of continuous media, II, World Scientific, River Edge, NJ, 1997 | MR | MR | Zbl | Zbl

[20] D. R. Bland, Nonlinear dynamic elasticity, Blaisdell, Waltham, MA–Toronto, ON–London, 1969 | MR | MR | Zbl | Zbl

[21] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear waves in elastic media, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[22] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR | Zbl

[23] V. V. Lokhin, L. I. Sedov, “Nonlinear tensor functions of several tensor arguments”, J. Appl. Math. Mech., 27:3 (1963), 597–629 | DOI | MR | Zbl

[24] A. G. Kulikovskii, “Equations describing the propagation of nonlinear quasitransverse waves in a weakly non-isotropic elastic body”, J. Appl. Math. Mech., 50:4 (1986), 455–461 | DOI | MR | Zbl

[25] E. I. Sveshnikova, “Simple waves in nonlinearly elastic media”, J. Appl. Math. Mech., 46:4 (1982), 509–512 | DOI | MR | Zbl

[26] A. G. Kulikovskii, E. I. Sveshnikova, “Investigation of the shock adiabat of quasitransverse shock waves in a prestressed elastic medium”, J. Appl. Math. Mech., 46:5 (1982), 667–673 | DOI | Zbl

[27] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik. VI: Hydrodynamik, Akademie-Verlag, Berlin, 1991 | MR | MR | Zbl

[28] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl

[29] A. G. Kulikovskij, E. I. Sveshnikova, “A selfsimilar problem on the action of a sudden load on the boundary of an elastic half-space”, J. Appl. Math. Mech., 49:2 (1985), 214–220 | DOI | MR | Zbl

[30] A. G. Kulikovskij, E. I. Sveshnikova, “The decay of an arbitrary initial discontinuity in an elastic medium”, J. Appl. Math. Mech., 52:6 (1988), 786–790 | DOI | MR | Zbl

[31] A. G. Kulikovskij, E. I. Sveshnikova, “A condition for the nonexistence and nonuniqueness of solutions of self-similar problems of continuum mechanics”, J. Appl. Math. Mech., 65:6 (2001), 941–950 | DOI | MR | Zbl

[32] A. G. Kulikovskij, “Peculiarities of the behavior of nonlinear quasitransversal waves in an elastic medium with a small anisotropy”, Proc. Steklov Inst. Math., 186 (1991), 153–160 | MR | Zbl | Zbl

[33] A. G. Kulikovskij, E. I. Sveshnikova, “On the structure of quasitransverse elastic shock waves”, J. Appl. Math. Mech., 51:6 (1987), 711–716 | DOI | MR | Zbl

[34] A. P. Chugainova, “Issledovanie struktury kvazipoperechnykh udarnykh voln dlya opredelennogo klassa uprugikh sred”, Problemy mekhaniki, ekologii, tekhnologii, Nauka, M., 1991

[35] A. P. Chugainova, “The formation of a selfsimilar solution for the problem of non-linear waves in an elastic half-space”, J. Appl. Math. Mech., 52:4 (1988), 541–545 | DOI | MR

[36] A. P. Chugainova, “O vykhode nelineinykh voln na avtomodelnyi rezhim v zadache o deistvii vnezapnogo izmeneniya nagruzki na granitsu uprugogo poluprostranstva”, Izv. AN SSSR, ser. mekh. tverd. tela, 25:3 (1990), 187–189

[37] A. P. Chugainova, “The interaction of non-linear waves in a slightly anisotropic viscoelastic medium”, J. Appl. Math. Mech., 57:2 (1993), 375–381 | DOI | MR

[38] A. P. Chugainova, “O perestroike nelineinoi uprugoi volny v srede s maloi anizotropiei”, Izv. RAN, ser. mekh. tverd. tela, 28:5 (1993), 75–81

[39] B. L. Roždestvenskii, N. N. Janenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl | Zbl

[40] A. G. Kulikovskij, A. P. Chugainova, “Disintegration conditions for a nonlinear wave in a viscoelastic medium”, Comput. Math. Math. Phys., 38:2 (1998), 305–312 | MR | Zbl

[41] A. G. Kulikovskij, A. P. Chugainova, “The stability of a metastable shock wave in a viscoelastic medium under two-dimensional perturbations”, J. Appl. Math. Mech., 66:1 (2002), 107–114 | DOI | Zbl

[42] A. G. Kulikovskij, A. P. Chugainova, “The stability of quasi-transverse shock waves in anisotropic elastic media”, J. Appl. Math. Mech., 64:6 (2000), 981–986 | DOI | MR | Zbl

[43] B. B. Kadomtsev, V. I. Petviashvili, “The stability of quasi-transverse shock waves in anisotropic elastic media”, Soviet Phys. Dokl., 15 (1970), 539–541 | Zbl

[44] E. A. Zabolotskaya, R. V. Khokhlov, “Kvaziploskie volny v nelineinoi akustike ogranichennykh puchkov”, Akusticheskii zhurnal, 15:1 (1969), 40–47

[45] A. G. Kulikovskii, “The possible effect of oscillations in a discontinuity structure on the set of admissible discontinuities”, Soviet Phys. Dokl., 29:4 (1984), 283–285 | MR

[46] A. G. Kulikovskii, N. I. Gvozdovskaya, “The effect of dispersion on the set of admissible discontinuities in continuum mechanics”, Proc. Steklov Inst. Math., 223 (1998), 55–65 | MR | Zbl

[47] A. P. Chugainova, “Asymptotic behavior of nonlinear waves in elastic media with dispersion and dissipation”, Theoret. Math. Phys., 147:2 (2006), 646–659 | DOI | MR

[48] A. P. Chugainova, “Self-similar asymptotics of wave problems and the structures of non-classical discontinuities in non-linearly elastic media with dispersion and dissipation”, J. Appl. Math. Mech., 71:5 (2007), 701–711 | DOI

[49] N. S. Bakhvalov, M. È. Èglit, “Effective equations with dispersion for waves propagating in periodic media”, Dokl. Math., 61:1 (2000), 1–4 | MR | Zbl

[50] A. G. Kulikovskij, A. P. Chugajnova, “The simulation of influence of small-scale dispersive processes in a solid medium on the formation of large-scale phenomena”, Comput. Math. Math. Phys., 44:6 (2004), 1062–1068 | MR | Zbl

[51] J. W. S. Rayleigh, The theory of sound, Dover, New York, 1945 | MR | Zbl