@article{RM_2008_63_2_a3,
author = {A. G. Kulikovskii and A. P. Chugainova},
title = {Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {283--350},
year = {2008},
volume = {63},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_2_a3/}
}
TY - JOUR AU - A. G. Kulikovskii AU - A. P. Chugainova TI - Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 283 EP - 350 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2008_63_2_a3/ LA - en ID - RM_2008_63_2_a3 ER -
%0 Journal Article %A A. G. Kulikovskii %A A. P. Chugainova %T Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2008 %P 283-350 %V 63 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2008_63_2_a3/ %G en %F RM_2008_63_2_a3
A. G. Kulikovskii; A. P. Chugainova. Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 283-350. http://geodesic.mathdoc.fr/item/RM_2008_63_2_a3/
[1] G. Ya. Galin, “Shock waves in media described by an arbitrary equation of state”, Soviet Phys. Dokl., 3 (1958), 244–247 | MR | Zbl
[2] O. A. Olejnik, “Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation”, Amer. Math. Soc. Transl. (2), 33 (1963), 285–290 | MR | Zbl
[3] I. M. Gel'fand, “Some problems in the theory of quasilinear equations”, Amer. Math. Soc. Transl. (2), 29 (1963), 295–381 | MR | MR | Zbl | Zbl
[4] G. Ya. Galin, “A theory of shock waves”, Soviet Phys. Dokl., 4 (1960), 757–760 | MR | Zbl
[5] S. K. Godunov, “On nonunique “blurring” of discontinuities in solutions of quasilinear systems”, Soviet Math. Dokl., 2 (1961), 43–44 | MR | Zbl
[6] V. F. D'yachenko, “Cauchy's problem for quasi-linear systems”, Soviet Math. Dokl., 2 (1961), 7–8 | MR | Zbl
[7] N. D. Vvedenskaya, “An example of nonuniqueness of a generalized solution of a quasi-linear system of equations”, Soviet Math. Dokl., 2 (1961), 89–90 | MR | Zbl
[8] Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, The mathematical theory of combustion and explosions, Consultants Bureau (Plenum), New York, 1985 | MR | MR
[9] A. A. Barmin; A. G. Kulikovskii, “Shock waves of ionized gases in an electromagnetic field”, Soviet Phys. Dokl., 13 (1968), 4–7
[10] A. G. Kulikovskii, “Surfaces of discontinuity separating two perfect media of different properties. Recombination waves in magnetohydrodynamics”, J. Appl. Math. Mech., 32:6 (1968), 1145–1152 | DOI | Zbl
[11] L. I. Sedov, V. P. Korobejnikov, V. V. Markov, “The theory of propagation of blast waves”, Proc. Steklov Inst. Math., 175 (1988), 187–228 | MR | Zbl
[12] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, “Nonlinear wave processes in the initiation and propagation of gaseous detonation”, Proc. Steklov Inst. Math., 251 (2005), 192–205 | MR | Zbl
[13] G. B. Whitham, Linear and nonlinear waves, Pure Appl. Math., Wiley, New York–London–Sydney, 1974 | MR | Zbl
[14] A. A. Barmin, V. S. Uspenskii, “Development of pulsation regimes in one-dimensional unsteady MHD flows with switching off of the electrical conductivity”, Fluid Dynamics, 21:4 (1986), 604–610 | DOI
[15] I. B. Bakholdin, Bezdissipativnye razryvy v mekhanike sploshnoi sredy, Fizmatlit, M., 2004
[16] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau (Plenum), New York, 1984 | MR | MR | Zbl | Zbl
[17] A. T. Ilichev, Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003
[18] V. I. Karpman, Non-linear waves in dispersive media, International Series of Monographs in Natural Philosophy, 71, Pergamon Press, Oxford–New York–Toronto, ON, 1975 | MR | MR
[19] L. I. Sedov, Mechanics of continuous media, II, World Scientific, River Edge, NJ, 1997 | MR | MR | Zbl | Zbl
[20] D. R. Bland, Nonlinear dynamic elasticity, Blaisdell, Waltham, MA–Toronto, ON–London, 1969 | MR | MR | Zbl | Zbl
[21] A. G. Kulikovskii, E. I. Sveshnikova, Nonlinear waves in elastic media, CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[22] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR | Zbl
[23] V. V. Lokhin, L. I. Sedov, “Nonlinear tensor functions of several tensor arguments”, J. Appl. Math. Mech., 27:3 (1963), 597–629 | DOI | MR | Zbl
[24] A. G. Kulikovskii, “Equations describing the propagation of nonlinear quasitransverse waves in a weakly non-isotropic elastic body”, J. Appl. Math. Mech., 50:4 (1986), 455–461 | DOI | MR | Zbl
[25] E. I. Sveshnikova, “Simple waves in nonlinearly elastic media”, J. Appl. Math. Mech., 46:4 (1982), 509–512 | DOI | MR | Zbl
[26] A. G. Kulikovskii, E. I. Sveshnikova, “Investigation of the shock adiabat of quasitransverse shock waves in a prestressed elastic medium”, J. Appl. Math. Mech., 46:5 (1982), 667–673 | DOI | Zbl
[27] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik. VI: Hydrodynamik, Akademie-Verlag, Berlin, 1991 | MR | MR | Zbl
[28] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl
[29] A. G. Kulikovskij, E. I. Sveshnikova, “A selfsimilar problem on the action of a sudden load on the boundary of an elastic half-space”, J. Appl. Math. Mech., 49:2 (1985), 214–220 | DOI | MR | Zbl
[30] A. G. Kulikovskij, E. I. Sveshnikova, “The decay of an arbitrary initial discontinuity in an elastic medium”, J. Appl. Math. Mech., 52:6 (1988), 786–790 | DOI | MR | Zbl
[31] A. G. Kulikovskij, E. I. Sveshnikova, “A condition for the nonexistence and nonuniqueness of solutions of self-similar problems of continuum mechanics”, J. Appl. Math. Mech., 65:6 (2001), 941–950 | DOI | MR | Zbl
[32] A. G. Kulikovskij, “Peculiarities of the behavior of nonlinear quasitransversal waves in an elastic medium with a small anisotropy”, Proc. Steklov Inst. Math., 186 (1991), 153–160 | MR | Zbl | Zbl
[33] A. G. Kulikovskij, E. I. Sveshnikova, “On the structure of quasitransverse elastic shock waves”, J. Appl. Math. Mech., 51:6 (1987), 711–716 | DOI | MR | Zbl
[34] A. P. Chugainova, “Issledovanie struktury kvazipoperechnykh udarnykh voln dlya opredelennogo klassa uprugikh sred”, Problemy mekhaniki, ekologii, tekhnologii, Nauka, M., 1991
[35] A. P. Chugainova, “The formation of a selfsimilar solution for the problem of non-linear waves in an elastic half-space”, J. Appl. Math. Mech., 52:4 (1988), 541–545 | DOI | MR
[36] A. P. Chugainova, “O vykhode nelineinykh voln na avtomodelnyi rezhim v zadache o deistvii vnezapnogo izmeneniya nagruzki na granitsu uprugogo poluprostranstva”, Izv. AN SSSR, ser. mekh. tverd. tela, 25:3 (1990), 187–189
[37] A. P. Chugainova, “The interaction of non-linear waves in a slightly anisotropic viscoelastic medium”, J. Appl. Math. Mech., 57:2 (1993), 375–381 | DOI | MR
[38] A. P. Chugainova, “O perestroike nelineinoi uprugoi volny v srede s maloi anizotropiei”, Izv. RAN, ser. mekh. tverd. tela, 28:5 (1993), 75–81
[39] B. L. Roždestvenskii, N. N. Janenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl | Zbl
[40] A. G. Kulikovskij, A. P. Chugainova, “Disintegration conditions for a nonlinear wave in a viscoelastic medium”, Comput. Math. Math. Phys., 38:2 (1998), 305–312 | MR | Zbl
[41] A. G. Kulikovskij, A. P. Chugainova, “The stability of a metastable shock wave in a viscoelastic medium under two-dimensional perturbations”, J. Appl. Math. Mech., 66:1 (2002), 107–114 | DOI | Zbl
[42] A. G. Kulikovskij, A. P. Chugainova, “The stability of quasi-transverse shock waves in anisotropic elastic media”, J. Appl. Math. Mech., 64:6 (2000), 981–986 | DOI | MR | Zbl
[43] B. B. Kadomtsev, V. I. Petviashvili, “The stability of quasi-transverse shock waves in anisotropic elastic media”, Soviet Phys. Dokl., 15 (1970), 539–541 | Zbl
[44] E. A. Zabolotskaya, R. V. Khokhlov, “Kvaziploskie volny v nelineinoi akustike ogranichennykh puchkov”, Akusticheskii zhurnal, 15:1 (1969), 40–47
[45] A. G. Kulikovskii, “The possible effect of oscillations in a discontinuity structure on the set of admissible discontinuities”, Soviet Phys. Dokl., 29:4 (1984), 283–285 | MR
[46] A. G. Kulikovskii, N. I. Gvozdovskaya, “The effect of dispersion on the set of admissible discontinuities in continuum mechanics”, Proc. Steklov Inst. Math., 223 (1998), 55–65 | MR | Zbl
[47] A. P. Chugainova, “Asymptotic behavior of nonlinear waves in elastic media with dispersion and dissipation”, Theoret. Math. Phys., 147:2 (2006), 646–659 | DOI | MR
[48] A. P. Chugainova, “Self-similar asymptotics of wave problems and the structures of non-classical discontinuities in non-linearly elastic media with dispersion and dissipation”, J. Appl. Math. Mech., 71:5 (2007), 701–711 | DOI
[49] N. S. Bakhvalov, M. È. Èglit, “Effective equations with dispersion for waves propagating in periodic media”, Dokl. Math., 61:1 (2000), 1–4 | MR | Zbl
[50] A. G. Kulikovskij, A. P. Chugajnova, “The simulation of influence of small-scale dispersive processes in a solid medium on the formation of large-scale phenomena”, Comput. Math. Math. Phys., 44:6 (2004), 1062–1068 | MR | Zbl
[51] J. W. S. Rayleigh, The theory of sound, Dover, New York, 1945 | MR | Zbl