@article{RM_2008_63_2_a2,
author = {A. Yu. Kolesov and N. Kh. Rozov and V. A. Sadovnichii},
title = {Mathematical aspects of the theory of development of turbulence in the sense of {Landau}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {221--282},
year = {2008},
volume = {63},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_2_a2/}
}
TY - JOUR AU - A. Yu. Kolesov AU - N. Kh. Rozov AU - V. A. Sadovnichii TI - Mathematical aspects of the theory of development of turbulence in the sense of Landau JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 221 EP - 282 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2008_63_2_a2/ LA - en ID - RM_2008_63_2_a2 ER -
%0 Journal Article %A A. Yu. Kolesov %A N. Kh. Rozov %A V. A. Sadovnichii %T Mathematical aspects of the theory of development of turbulence in the sense of Landau %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2008 %P 221-282 %V 63 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2008_63_2_a2/ %G en %F RM_2008_63_2_a2
A. Yu. Kolesov; N. Kh. Rozov; V. A. Sadovnichii. Mathematical aspects of the theory of development of turbulence in the sense of Landau. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 221-282. http://geodesic.mathdoc.fr/item/RM_2008_63_2_a2/
[1] L. D. Landau, “On the problem of turbulence”, C. R. Acad. Sci. URSS (N.S.), 44 (1944), 311–314 | MR | Zbl
[2] E. Hopf, “A mathematical example displaying features of turbulence”, Comm. Pure Appl. Math., 1:4 (1948), 303–322 | DOI | MR | Zbl
[3] V. I. Arnol'd, B. A. Khesin, Topological methods in hydrodynamics, Appl. Math. Sci., 125, Springer-Verlag, New York, 1998 | MR | Zbl
[4] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[5] D. Ruelle, F. Takens, “On the nature of turbulence”, Comm. Math. Phys., 20:3 (1971), 167–192 | DOI | MR | Zbl
[6] S. Newhouse, D. Ruelle, F. Takens, “Occurence of strange Axiom A attractors nearquasiperiodic flows on $T^m$, $m\geq 3$”, Comm. Math. Phys., 64:1 (1978), 35–40 | DOI | MR | Zbl
[7] P. Bergé, Y. Pomeau, Ch. Vidal, L'ordre dans le chaos. Vers une approche deterministe de la turbulence, Collection Enseignement des Sciences, 33, Hermann, Paris, 1984 | MR | Zbl
[8] M. J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations”, J. Statist. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl
[9] G. V. Osipov, “O razvitii turbulentnosti po Landau v diskretnoi modeli potokovykh sistem”, Izv. vuzov. Ser. radiofiz., 31:5 (1988), 624–627 | MR
[10] G. R. Sell, “Resonance and bifurcations in Hopf–Landau dynamical systems”, Nonlinear dynamics and turbulence, Interaction Mech. Math. Ser., Pitman, Boston, MA, 1983, 305–313 | MR | Zbl
[11] A. M. Il'in, A. S. Kalashnikov, O. A. Oleinik, “Linear equations of the second order of parabolic type”, Russian Math. Surveys, 17:3 (1962), 1–143 | DOI | MR | Zbl
[12] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | Zbl | Zbl
[13] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981 | MR | MR | Zbl | Zbl
[14] Yu. L. Daleckii, M. G. Krein, Stability of solutions of differential equations in Banach space., Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, R.I., 1974 | MR | MR | Zbl | Zbl
[15] M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon, M. Gisselfält, “On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation”, Phys. D, 44:3 (1990), 421–444 | DOI | MR | Zbl
[16] H. Iwasaki, S. Toh, “Statistics and structures of strong turbulence in a complex Ginzburg–Landau equation”, Progr. Theoret. Phys., 87:5 (1992), 1127–1137 | DOI
[17] G. G. Malinetskii, A. B. Potapov, Sovremennye problemy nelineinoi dinamiki, Editorial URSS, M., 2002
[18] A. Yu. Kolesov, N. Kh. Rozov, “Attractors of hard turbulence type in relaxation systems”, Differ. Equ., 38:12 (2002), 1694–1702 | DOI | MR | Zbl
[19] A. Yu. Kolesov, N. Kh. Rozov, “On-off intermittency in relaxation systems”, Differ. Equ., 39:1 (2003), 36–45 | DOI | MR
[20] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichiy, “Life on the edge of chaos”, J. Math. Sci. (N. Y.), 120:3 (2004), 1372–1398 | DOI | MR | Zbl
[21] A. N. Sharkovskij, Yu. L. Majstrenko, E. Yu. Romanenko, Difference equations and their applications, Math. Appl., 250, Kluwer, Dordrecht, 1993 | MR | MR | Zbl | Zbl
[22] A. D. Morozov, Vvedenie v teoriyu fraktalov, Institut kompyuternykh issledovanii, M., Izhevsk, 2002
[23] N. V. Nikolenko, “Invariant asymptotically stable tori of the perturbed Korteweg–de Vries equation”, Russian Math. Surveys, 35:5 (1980), 139–207 | DOI | MR | Zbl | Zbl
[24] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[25] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005
[26] T. Puu, Nonlinear economic dynamics, Lecture Notes in Econom. and Math. Systems, 336, Springer-Verlag, Berlin, 1989 | MR | Zbl
[27] Wei-Bin Zhang, Synergetic economics. Time and change in nonlinear economics, Springer Ser. Synergetics, 53, Springer-Verlag, Berlin, 1991 | MR | Zbl
[28] J. R. Hicks, A contribution to the theory of the trade cycle, Oxford University Press, Oxford, 1950
[29] N. N. Bogoljubow, J. A. Mitropolski, Asymptotische Methoden in der Theorie der nichtlinearen Schwingungen, Akademie-Verlag, Berlin, 1965 | MR | MR | Zbl | Zbl
[30] Yu. N. Bibikov, Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, LGU, L., 1991 | MR | Zbl
[31] A. C. Scott, “Distributed multimode oscillators of one and two spatial dimensions”, IEEE Trans. Circuits Syst. I Regul. Pap., CT-17:1 (1970), 55–80
[32] A. C. Scott, “Tunnel diode arrays for information processing and storage”, IEEE Trans. Syst., Man, Cybern., SMC-1:3 (1971), 267–275 | DOI
[33] A. Scott, Nonlinear science. Emergence and dynamics of coherent structures, Oxf. Texts Appl. Eng. Math., 1, Oxford University Press, Oxford, 1999 | MR | Zbl
[34] R. D. Parmentier, “Lumped multimode oscillators in the continuum approximation”, IEEE Trans. Circuits Syst. I Regul. Pap., CT-19:2 (1972), 142–145
[35] A. Yu. Kolesov, N. Kh. Rosov, “Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain”, Theoret. Math. Phys., 125:2 (2000), 1476–1488 | DOI | MR | Zbl
[36] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rosov, “Buffer phenomenon in nonlinear physics”, Proc. Steklov Inst. Math., 250 (2005), 102–168 | MR | Zbl
[37] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, “On the classification of the solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point”, J. Soviet Math., 41:5 (1988), 1292–1358 | DOI | MR | Zbl
[38] Yu. A. Mitropolskii, O. B. Lykova, Integralnye mnogoobraziya v nelineinoi mekhanike, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1973 | MR | Zbl
[39] S. D. Glyzin, “Chislennoe obosnovanie gipotezy Landau–Kolesova o prirode turbulentnosti”, Matematicheskie modeli v biologii i meditsine, 3, Vilnyus, IMK, 1989, 31–36 | MR | Zbl
[40] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Chaotic buffering property in chains of coupled oscillators”, Differ. Equ., 41:1 (2005), 41–49 | DOI | MR | Zbl