Mathematical aspects of the theory of development of turbulence in the sense of Landau
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 221-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains some rigorous mathematical results related to the theory of development of turbulence in the sense of Landau. In diverse areas of the natural sciences, specific examples of non-linear dynamical systems are considered (including E. Hopf's classical example) whose attractors turn out to be invariant tori of arbitrarily high dimension under an appropriate change of parameters. The investigation of these examples enables us to give a rigorous meaning to the notion of a ‘turbulent attractor’ in some cases and to reveal the main properties of such an attractor, notable among which are its fractal property and its infinite dimensionality.
@article{RM_2008_63_2_a2,
     author = {A. Yu. Kolesov and N. Kh. Rozov and V. A. Sadovnichii},
     title = {Mathematical aspects of the theory of development of turbulence in the sense of {Landau}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {221--282},
     year = {2008},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_2_a2/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
AU  - V. A. Sadovnichii
TI  - Mathematical aspects of the theory of development of turbulence in the sense of Landau
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 221
EP  - 282
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_2_a2/
LA  - en
ID  - RM_2008_63_2_a2
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%A V. A. Sadovnichii
%T Mathematical aspects of the theory of development of turbulence in the sense of Landau
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 221-282
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2008_63_2_a2/
%G en
%F RM_2008_63_2_a2
A. Yu. Kolesov; N. Kh. Rozov; V. A. Sadovnichii. Mathematical aspects of the theory of development of turbulence in the sense of Landau. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 221-282. http://geodesic.mathdoc.fr/item/RM_2008_63_2_a2/

[1] L. D. Landau, “On the problem of turbulence”, C. R. Acad. Sci. URSS (N.S.), 44 (1944), 311–314 | MR | Zbl

[2] E. Hopf, “A mathematical example displaying features of turbulence”, Comm. Pure Appl. Math., 1:4 (1948), 303–322 | DOI | MR | Zbl

[3] V. I. Arnol'd, B. A. Khesin, Topological methods in hydrodynamics, Appl. Math. Sci., 125, Springer-Verlag, New York, 1998 | MR | Zbl

[4] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[5] D. Ruelle, F. Takens, “On the nature of turbulence”, Comm. Math. Phys., 20:3 (1971), 167–192 | DOI | MR | Zbl

[6] S. Newhouse, D. Ruelle, F. Takens, “Occurence of strange Axiom A attractors nearquasiperiodic flows on $T^m$, $m\geq 3$”, Comm. Math. Phys., 64:1 (1978), 35–40 | DOI | MR | Zbl

[7] P. Bergé, Y. Pomeau, Ch. Vidal, L'ordre dans le chaos. Vers une approche deterministe de la turbulence, Collection Enseignement des Sciences, 33, Hermann, Paris, 1984 | MR | Zbl

[8] M. J. Feigenbaum, “Quantitative universality for a class of nonlinear transformations”, J. Statist. Phys., 19:1 (1978), 25–52 | DOI | MR | Zbl

[9] G. V. Osipov, “O razvitii turbulentnosti po Landau v diskretnoi modeli potokovykh sistem”, Izv. vuzov. Ser. radiofiz., 31:5 (1988), 624–627 | MR

[10] G. R. Sell, “Resonance and bifurcations in Hopf–Landau dynamical systems”, Nonlinear dynamics and turbulence, Interaction Mech. Math. Ser., Pitman, Boston, MA, 1983, 305–313 | MR | Zbl

[11] A. M. Il'in, A. S. Kalashnikov, O. A. Oleinik, “Linear equations of the second order of parabolic type”, Russian Math. Surveys, 17:3 (1962), 1–143 | DOI | MR | Zbl

[12] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | Zbl | Zbl

[13] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981 | MR | MR | Zbl | Zbl

[14] Yu. L. Daleckii, M. G. Krein, Stability of solutions of differential equations in Banach space., Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, R.I., 1974 | MR | MR | Zbl | Zbl

[15] M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon, M. Gisselfält, “On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation”, Phys. D, 44:3 (1990), 421–444 | DOI | MR | Zbl

[16] H. Iwasaki, S. Toh, “Statistics and structures of strong turbulence in a complex Ginzburg–Landau equation”, Progr. Theoret. Phys., 87:5 (1992), 1127–1137 | DOI

[17] G. G. Malinetskii, A. B. Potapov, Sovremennye problemy nelineinoi dinamiki, Editorial URSS, M., 2002

[18] A. Yu. Kolesov, N. Kh. Rozov, “Attractors of hard turbulence type in relaxation systems”, Differ. Equ., 38:12 (2002), 1694–1702 | DOI | MR | Zbl

[19] A. Yu. Kolesov, N. Kh. Rozov, “On-off intermittency in relaxation systems”, Differ. Equ., 39:1 (2003), 36–45 | DOI | MR

[20] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichiy, “Life on the edge of chaos”, J. Math. Sci. (N. Y.), 120:3 (2004), 1372–1398 | DOI | MR | Zbl

[21] A. N. Sharkovskij, Yu. L. Majstrenko, E. Yu. Romanenko, Difference equations and their applications, Math. Appl., 250, Kluwer, Dordrecht, 1993 | MR | MR | Zbl | Zbl

[22] A. D. Morozov, Vvedenie v teoriyu fraktalov, Institut kompyuternykh issledovanii, M., Izhevsk, 2002

[23] N. V. Nikolenko, “Invariant asymptotically stable tori of the perturbed Korteweg–de Vries equation”, Russian Math. Surveys, 35:5 (1980), 139–207 | DOI | MR | Zbl | Zbl

[24] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[25] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[26] T. Puu, Nonlinear economic dynamics, Lecture Notes in Econom. and Math. Systems, 336, Springer-Verlag, Berlin, 1989 | MR | Zbl

[27] Wei-Bin Zhang, Synergetic economics. Time and change in nonlinear economics, Springer Ser. Synergetics, 53, Springer-Verlag, Berlin, 1991 | MR | Zbl

[28] J. R. Hicks, A contribution to the theory of the trade cycle, Oxford University Press, Oxford, 1950

[29] N. N. Bogoljubow, J. A. Mitropolski, Asymptotische Methoden in der Theorie der nichtlinearen Schwingungen, Akademie-Verlag, Berlin, 1965 | MR | MR | Zbl | Zbl

[30] Yu. N. Bibikov, Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, LGU, L., 1991 | MR | Zbl

[31] A. C. Scott, “Distributed multimode oscillators of one and two spatial dimensions”, IEEE Trans. Circuits Syst. I Regul. Pap., CT-17:1 (1970), 55–80

[32] A. C. Scott, “Tunnel diode arrays for information processing and storage”, IEEE Trans. Syst., Man, Cybern., SMC-1:3 (1971), 267–275 | DOI

[33] A. Scott, Nonlinear science. Emergence and dynamics of coherent structures, Oxf. Texts Appl. Eng. Math., 1, Oxford University Press, Oxford, 1999 | MR | Zbl

[34] R. D. Parmentier, “Lumped multimode oscillators in the continuum approximation”, IEEE Trans. Circuits Syst. I Regul. Pap., CT-19:2 (1972), 142–145

[35] A. Yu. Kolesov, N. Kh. Rosov, “Characteristic features of the dynamics of the Ginzburg–Landau equation in a plane domain”, Theoret. Math. Phys., 125:2 (2000), 1476–1488 | DOI | MR | Zbl

[36] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rosov, “Buffer phenomenon in nonlinear physics”, Proc. Steklov Inst. Math., 250 (2005), 102–168 | MR | Zbl

[37] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, “On the classification of the solutions of a system of nonlinear diffusion equations in a neighborhood of a bifurcation point”, J. Soviet Math., 41:5 (1988), 1292–1358 | DOI | MR | Zbl

[38] Yu. A. Mitropolskii, O. B. Lykova, Integralnye mnogoobraziya v nelineinoi mekhanike, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1973 | MR | Zbl

[39] S. D. Glyzin, “Chislennoe obosnovanie gipotezy Landau–Kolesova o prirode turbulentnosti”, Matematicheskie modeli v biologii i meditsine, 3, Vilnyus, IMK, 1989, 31–36 | MR | Zbl

[40] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Chaotic buffering property in chains of coupled oscillators”, Differ. Equ., 41:1 (2005), 41–49 | DOI | MR | Zbl