Finite unions of balls in $\mathbb C^n$ are rationally convex
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 381-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2008_63_2_a13,
     author = {S. Yu. Nemirovski},
     title = {Finite unions of balls in~$\mathbb C^n$ are rationally convex},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {381--382},
     year = {2008},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_2_a13/}
}
TY  - JOUR
AU  - S. Yu. Nemirovski
TI  - Finite unions of balls in $\mathbb C^n$ are rationally convex
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 381
EP  - 382
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_2_a13/
LA  - en
ID  - RM_2008_63_2_a13
ER  - 
%0 Journal Article
%A S. Yu. Nemirovski
%T Finite unions of balls in $\mathbb C^n$ are rationally convex
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 381-382
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2008_63_2_a13/
%G en
%F RM_2008_63_2_a13
S. Yu. Nemirovski. Finite unions of balls in $\mathbb C^n$ are rationally convex. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 381-382. http://geodesic.mathdoc.fr/item/RM_2008_63_2_a13/

[1] E. Kallin, Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 301–304 | MR | Zbl

[2] J. Duval, N. Sibony, Duke Math. J., 79:2 (1995), 487–513 | DOI | MR | Zbl

[3] A. M. Kytmanov, G. Khudaiberganov, Sib. matem. zhurn., 25:5 (1984), 196–198 | MR | Zbl