Transcendence type for almost all points of the $m$-dimensional complex space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 375-377
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2008_63_2_a11,
author = {S. V. Mikhailov},
title = {Transcendence type for almost all points of the $m$-dimensional complex space},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {375--377},
year = {2008},
volume = {63},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_2_a11/}
}
TY - JOUR AU - S. V. Mikhailov TI - Transcendence type for almost all points of the $m$-dimensional complex space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 375 EP - 377 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2008_63_2_a11/ LA - en ID - RM_2008_63_2_a11 ER -
S. V. Mikhailov. Transcendence type for almost all points of the $m$-dimensional complex space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 375-377. http://geodesic.mathdoc.fr/item/RM_2008_63_2_a11/
[1] S. Lang, Introduction to transcendental numbers, Addison-Wesley, Reading–London–Don Mills, 1966 | MR | Zbl
[2] K. Mahler, Acta Arith., 18 (1971), 63–76 | MR | Zbl
[3] Yu. V. Nesterenko, Math. Notes, 15 (1974), 234–240 | MR | Zbl | Zbl
[4] G. V. Chudnovsky, Contribution to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl
[5] F. Amoroso, Acta Arith., 56:4 (1990), 345–364 | MR | Zbl
[6] S. V. Mikhailov, Sb. Math., 198:10 (2007), 1443–1463 | DOI | MR
[7] Yu. V. Nesterenko, Proc. Steklov Inst. Math., 218 (1997), 294–331 | MR | Zbl