Transcendence type for almost all points of the $m$-dimensional complex space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 375-377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2008_63_2_a11,
     author = {S. V. Mikhailov},
     title = {Transcendence type for almost all points of the $m$-dimensional complex space},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {375--377},
     year = {2008},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_2_a11/}
}
TY  - JOUR
AU  - S. V. Mikhailov
TI  - Transcendence type for almost all points of the $m$-dimensional complex space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 375
EP  - 377
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_2_a11/
LA  - en
ID  - RM_2008_63_2_a11
ER  - 
%0 Journal Article
%A S. V. Mikhailov
%T Transcendence type for almost all points of the $m$-dimensional complex space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 375-377
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2008_63_2_a11/
%G en
%F RM_2008_63_2_a11
S. V. Mikhailov. Transcendence type for almost all points of the $m$-dimensional complex space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 375-377. http://geodesic.mathdoc.fr/item/RM_2008_63_2_a11/

[1] S. Lang, Introduction to transcendental numbers, Addison-Wesley, Reading–London–Don Mills, 1966 | MR | Zbl

[2] K. Mahler, Acta Arith., 18 (1971), 63–76 | MR | Zbl

[3] Yu. V. Nesterenko, Math. Notes, 15 (1974), 234–240 | MR | Zbl | Zbl

[4] G. V. Chudnovsky, Contribution to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl

[5] F. Amoroso, Acta Arith., 56:4 (1990), 345–364 | MR | Zbl

[6] S. V. Mikhailov, Sb. Math., 198:10 (2007), 1443–1463 | DOI | MR

[7] Yu. V. Nesterenko, Proc. Steklov Inst. Math., 218 (1997), 294–331 | MR | Zbl