To what extent are arithmetic progressions of fractional parts stochastic?
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 205-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the sequence of residues of division of $n$ members of an arithmetic progression by a real number $N$, it is proved that the Kolmogorov stochasticity parameter $\lambda_n$ tends to 0 as $n$ tends to infinity when the progression step is commensurable with $N$. In contrast, for the case when the step is incommensurable with $N$, examples are given in which the stochasticity parameter $\lambda_n$ not only does not tend to 0, but even takes some arbitrary large values (infrequently). Too small and too large values of the stochasticity parameter both indicate a small probability that the corresponding sequence is random. Thus, long arithmetic progressions of fractional parts are apparently much less stochastic than for geometric progressions (which provide moderate values of the stochasticity parameter, similar to its values for genuinely random sequences).
@article{RM_2008_63_2_a1,
     author = {V. I. Arnol'd},
     title = {To what extent are arithmetic progressions of fractional parts stochastic?},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {205--220},
     year = {2008},
     volume = {63},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_2_a1/}
}
TY  - JOUR
AU  - V. I. Arnol'd
TI  - To what extent are arithmetic progressions of fractional parts stochastic?
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 205
EP  - 220
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_2_a1/
LA  - en
ID  - RM_2008_63_2_a1
ER  - 
%0 Journal Article
%A V. I. Arnol'd
%T To what extent are arithmetic progressions of fractional parts stochastic?
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 205-220
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2008_63_2_a1/
%G en
%F RM_2008_63_2_a1
V. I. Arnol'd. To what extent are arithmetic progressions of fractional parts stochastic?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 2, pp. 205-220. http://geodesic.mathdoc.fr/item/RM_2008_63_2_a1/

[1] A. Kolmogoroff, “Sulla determinazione empirica di una legge di distribuzione”, Giorn. Ist. Ital. Attuari, 4:1 (1933), 83–91 (Italian) ; A. N. Kolmogorov, “Ob empiricheskom opredelenii zakona raspredeleniya”, [Izbr. trudy], Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1986, 134–141 ; A. N. Kolmogorov, “On the empirical determination of a distribution law”, Selected works. Vol. II. Probability theory and mathematical statistics, Math. Appl. (Soviet Ser.), 26, Kluwer Acad. Publ., Dordrecht, 1992, 139–146 | Zbl | MR | Zbl | MR | Zbl

[2] V. I. Arnold, “Empirical study of stochasticity for deterministic classical dynamics of geometrical progressions of residues”, Funct. Anal. Other Math., 2:4 (2007) (to appear)

[3] V. I. Arnol'd, Dynamics, statistics and projective geometry of Galois fields {(lecture on 13 November 2004)}, MCCME, Moscow, 2005 | MR

[4] A. N. Kolmogorov, “On a new confirmation of Mendel's laws”, Selected works. Vol. II. Probability theory and mathematical statistics, Math. Appl. (Soviet Ser.), 26, Kluwer Acad. Publ., Dordrecht, 1992, 222–227 | MR | MR | Zbl | Zbl

[5] V. I. Arnol'd, “Weak asymptotics for the numbers of solutions of Diophantine problems”, Funct. Anal. Appl., 33:4 (1999), 292–293 | DOI | MR | Zbl