Multidimensional analogue of Gusarov's theory of one-dimensional knots
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 166-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2008_63_1_a7,
     author = {V. M. Nezhinskii},
     title = {Multidimensional analogue of {Gusarov's} theory of one-dimensional knots},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {166--167},
     year = {2008},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_1_a7/}
}
TY  - JOUR
AU  - V. M. Nezhinskii
TI  - Multidimensional analogue of Gusarov's theory of one-dimensional knots
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 166
EP  - 167
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_1_a7/
LA  - en
ID  - RM_2008_63_1_a7
ER  - 
%0 Journal Article
%A V. M. Nezhinskii
%T Multidimensional analogue of Gusarov's theory of one-dimensional knots
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 166-167
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2008_63_1_a7/
%G en
%F RM_2008_63_1_a7
V. M. Nezhinskii. Multidimensional analogue of Gusarov's theory of one-dimensional knots. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 166-167. http://geodesic.mathdoc.fr/item/RM_2008_63_1_a7/

[1] A. Haefliger, Comment. Math. Helv., 41:1 (1966), 51–72 | DOI | MR | Zbl

[2] A. Haefliger, Ann. of Math. (2), 83:3 (1966), 402–436 | DOI | MR | Zbl

[3] T. B. Stanford, J. Knot Theory Ramifications, 9:2 (2000), 213–219 ; arXiv: math/9807161 | DOI | MR | Zbl

[4] A. Yasuhara, Fund. Math., 190 (2006), 289–297 ; arXiv: math/0412489v1 | DOI | MR | Zbl

[5] M. N. Gusarov, J. Math. Sci., 81:2 (1996), 2549–2561 | DOI | MR | Zbl

[6] M. N. Gusarov, Zapiski nauch. sem. POMI, 193 (1991), 4–9 | MR | Zbl

[7] V. M. Nezhinskii, Math. USSR-Izv., 24:1 (1985), 121–150 | DOI | MR | Zbl

[8] M. N. Gusarov, Invarianty konechnoi stepeni i $n$-ekvivalentnost zatseplenii, Dis. ...kand. fiz.-matem. nauk, Sankt-Peterburg, 1997