Asymptotics of eigenvalues and estimate for the kernel of the resolvent in an irregular boundary value problem generated by a~$2n$-th order differential equation on the interval~$[0,a]$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 155-157

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2008_63_1_a3,
     author = {G. A. Aigunov and T. Yu. Gadzhieva},
     title = {Asymptotics of eigenvalues and estimate for the kernel of the resolvent in an irregular boundary value problem generated by a~$2n$-th order differential equation on the interval~$[0,a]$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {155--157},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_1_a3/}
}
TY  - JOUR
AU  - G. A. Aigunov
AU  - T. Yu. Gadzhieva
TI  - Asymptotics of eigenvalues and estimate for the kernel of the resolvent in an irregular boundary value problem generated by a~$2n$-th order differential equation on the interval~$[0,a]$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 155
EP  - 157
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_1_a3/
LA  - en
ID  - RM_2008_63_1_a3
ER  - 
%0 Journal Article
%A G. A. Aigunov
%A T. Yu. Gadzhieva
%T Asymptotics of eigenvalues and estimate for the kernel of the resolvent in an irregular boundary value problem generated by a~$2n$-th order differential equation on the interval~$[0,a]$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 155-157
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2008_63_1_a3/
%G en
%F RM_2008_63_1_a3
G. A. Aigunov; T. Yu. Gadzhieva. Asymptotics of eigenvalues and estimate for the kernel of the resolvent in an irregular boundary value problem generated by a~$2n$-th order differential equation on the interval~$[0,a]$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 155-157. http://geodesic.mathdoc.fr/item/RM_2008_63_1_a3/