@article{RM_2008_63_1_a2,
author = {Yu. V. Pokornyi and M. B. Zvereva and S. A. Shabrov},
title = {Sturm{\textendash}Liouville oscillation theory for impulsive problems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {109--153},
year = {2008},
volume = {63},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_1_a2/}
}
TY - JOUR AU - Yu. V. Pokornyi AU - M. B. Zvereva AU - S. A. Shabrov TI - Sturm–Liouville oscillation theory for impulsive problems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 109 EP - 153 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2008_63_1_a2/ LA - en ID - RM_2008_63_1_a2 ER -
Yu. V. Pokornyi; M. B. Zvereva; S. A. Shabrov. Sturm–Liouville oscillation theory for impulsive problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 109-153. http://geodesic.mathdoc.fr/item/RM_2008_63_1_a2/
[1] C. Sturm, “Mémoire sur une classe d'équations à différences partielles”, J. Math. Pures Appl., 1 (1836), 373–444
[2] F. V. Atkinson, Discrete and continuous boundary problems, Math. Sci. Eng., 8, Academic Press, New York–London, 1964 | MR | Zbl | Zbl
[3] E. L. Ince, Integration of ordinary differential equations, Oliver and Boyd, Edinburgh, 1939 | MR | Zbl
[4] B. M. Levitan, Razlozhenie po sobstvennym funktsiyam differentsialnykh uravnenii vtorogo poryadka, GITTL, M.–L., 1950 | MR
[5] I. G. Petrovskii, Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Uchebnoe posobie, MGU, M., 1984 | MR | Zbl
[6] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York–Toronto–London, 1955 | MR | Zbl
[7] G. Sansone, Equazioni differenziali nel campo reale, vol. I, Zanichelli, Bologna, 1948 | MR | MR | Zbl
[8] F. Tricomi, Equazioni differenziali, Einaudi, Torino, 1948 | MR | Zbl
[9] N. Dunford, J. T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Wiley, New York–London, 1963 | MR | MR | Zbl
[10] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITTL, M.–L., 1950 | MR
[11] F. R. Gantmakher, “O nesimmetricheskikh yadrakh Kelloga”, Dokl. AN SSSR, 1 (1936), 3–5 | Zbl
[12] A. Yu. Levin, G. D. Stepanov, “One-dimensional boundary value problems with operators that do not lower the number of sign changes. I”, Siberian Math. J., 17:3 (1976), 466–482 | DOI | DOI | MR | MR | Zbl | Zbl
[13] Siberian Math. J., 17:4 (1976), 612–625 | DOI | DOI | MR | MR | Zbl | Zbl
[14] Yu. V. Pokornyi, “A nonclassical de la Vallée-Poussin problem”, Differ. Equ., 14:6 (1978), 725–732 | MR | Zbl | Zbl
[15] A. V. Borovskikh, Yu. V. Pokornyi, “Chebyshev–Haar systems in the theory of discontinuous Kellogg kernels”, Russian Math. Surveys, 49:3 (1994), 1–42 | DOI | MR | Zbl
[16] Yu. V. Pokornyi, K. P. Lazarev, “Some oscillation theorems for many-point problems”, Differ. Equ., 23:4 (1987), 452–462 | MR | Zbl
[17] V. Ya. Derr, “On the generalized de la Vallée-Poussin problem”, Differ. Equ., 23:11 (1987), 1254–1263 | MR | Zbl | Zbl
[18] A. F. Fillipov, Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR | Zbl
[19] J. Kurzweil, “Generalized ordinary differential equations”, Czechoslovak Math. J., 8(83) (1958), 360–388 | MR | Zbl
[20] A. Halanay, D. Wexler, Teoria calitativă a sistemelor cu impulsuri, Editura Academiei Republicii Socialiste Romania, Bucharest, 1968 | MR | MR | Zbl | Zbl
[21] P. Antosik, J. Mikusinski, R. Sikorski, Theory of distributions. The sequential approach, Elsevier, Amsterdam; PWN–Polish Scientific Publishers, Warsaw, 1973 | MR | MR | Zbl
[22] A. Yu. Levin, “Voprosy teorii obyknovennogo lineinogo differentsialnogo uravneniya. II”, Vestn. YarGU, 1974, no. 8, 122–144 | MR
[23] L. Young, Lectures on the calculus of variations and optimal control theory, Saunders, Philadelphia–London–Toronto, 1969 | MR | MR | Zbl
[24] E. L. Tonkov, “K voprosu o neostsillyatsii lineinoi sistemy”, Nelineinye kolebaniya i teoriya upravleniya, no. 4, Udmurt. gos. un-t, Izhevsk, 1982, 62–74 | MR
[25] S. T. Zavalischin, A. N. Sesekin, Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991 | MR | Zbl
[26] V. P. Maksimov, “O nekotorykh obobscheniyakh obyknovennykh differentsialnykh uravnenii, kraevykh zadach i ikh prilozheniyakh k zadacham ekonomicheskoi dinamiki”, Vest. PermGU, 4 (1997), 103–120
[27] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | MR | Zbl
[28] V. Ya. Derr, D. M. Kinzebulatov, “Differentsialnye uravneniya s obobschennymi funktsiyami, dopuskayuschimi umnozhenie na razryvnye funktsii”, Vestn. Udmurt. un-ta, 2005, no. 1, 35–58
[29] V. I. Rodionov, “Prisoedinennyi integral Rimana–Stiltesa v algebre preryvistykh funktsii”, Izv. In-ta matem. i inform. UGU, Izhevsk, 2005, 3–78
[30] V. A. Dykhta, O. N. Samsonyuk, Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, M., 2000 | MR | Zbl
[31] Yu. V. Egorov, Linear differential equations of principal type, Contemp. Soviet Math., Consultants Bureau, New York, 1986 | MR | MR | Zbl
[32] A. D. Myshkis, “Solutions of a linear homogeneous binomial second-order differential inequality with a distribution as a coefficient”, Differ. Equ., 32:5 (1996), 619–623 | MR | Zbl
[33] Yu. V. Pokornyi, “The Stieltjes integral and derivatives with respect to the measure in ordinary differential equations”, Dokl. Math., 59:1 (1999), 34–37 | MR | Zbl
[34] Yu. V. Pokornyi, “The Stieltjes integral and derivatives with respect to the measure in ordinary differential equations”, Dokl. Math., 65:2 (2002), 262–265 | MR | Zbl
[35] Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “Ob odnom klasse obobschennykh zadach Shturma–Liuvillya s razryvnymi resheniyami”, Differentsialnye uravneniya i smezhnye voprosy, Mezhdunarod. konf., posvyasch. 103-letiyu so dnya rozhd. I. G. Petrovskogo (Moskva, 2004), Sbornik tezisov, 166–167
[36] Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “O zadache Shturma–Liuvillya dlya razryvnoi struny”, Izv. VUZov Severo-Kavkaz. regiona. Estestv. nauki. Matem. i mekh. sploshnoi sredy, Spetsvypusk, 2004, 186–191 | Zbl
[37] Yu. V. Pokornyi, S. A. Shabrov, “Lineinye differentsialnye uravneniya vtorogo poryadka s obobschennymi koeffitsientami”, Tr. matem. f-ta VGU (nov. ser.), 4 (1999), 84–96
[38] Yu. V. Pokornyi, S. A. Shabrov, “Toward a Sturm–Liouville theory for an equation with generalized coefficients”, J. Math. Sci., 119:6 (2004), 769–787 | DOI | MR | Zbl
[39] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev i dr. (red.), Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | Zbl
[40] I. S. Kac, M. G. Krein, “On the spectral functions of the string”, Nine papers in analysis, Amer. Math. Soc. Transl., Ser. II, 103, Amer. Math. Soc., Providence, R.I., 1974, 19–102 | MR | MR | Zbl
[41] W. Feller, “Generalized second order differential operators and their lateral conditions”, Illinois J. Math., 1 (1957), 459–504 | MR | Zbl
[42] Yu. V. Pokornyi, V. L. Pryadiev, “Some problems of the qualitative Sturm–Liouville theory on a spatial network”, Russian Math. Surveys, 59:3 (2004), 515–552 | DOI | MR | Zbl
[43] W. Rudin, Principles of mathematical analysis, 2nd ed., New York–San Francisco–Toronto-London, McGraw-Hill; Tokyo, Kogakusha, 1964 | MR | Zbl | Zbl
[44] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR | Zbl
[45] S. Saks, Theory of the integral, 2, revised edit., G. E. Stechert Co. VI, New York, 1937 | MR | Zbl
[46] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl
[47] M. I. Dyachenko, P. L. Ulyanov, Mera i integral, Faktorial, M., 2002
[48] N. Dunford, J. T. Schwartz, Linear Operators. I. General theory, Pure Appl. Math., 6, Interscience, New York–London, 1958 | MR | MR | Zbl
[49] F. Riesz, B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Académie des Sciences de Hongrie, Budapest, 1952 | MR | MR | Zbl
[50] E. F. Beckenbach, R. Bellman, Inequalities, Ergeb. Math. Grenzgeb., 30, Springer, Berlin–Göttingen–Heidelberg, 1961 | MR | MR | Zbl | Zbl
[51] R. Courant, D. Hilbert, Methoden der mathematischen Physik. B. I, Interscience, New York, 1943 | MR | MR | Zbl
[52] E. Kamke, Differentialgleichungen. Losungsmethoden und Losungen, Akademische Verlagsgesellschaft, Leipzig, 1944 | MR | MR | Zbl | Zbl
[53] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[54] Yu. V. Pokornyi, A. V. Borovskikh, “On defects of axiomatics of Green's function”, Dokl. Math., 65:3 (2002), 399–403 | MR | MR | Zbl
[55] M. A. Krasnosel'skij, Je. A. Lifshits, A. V. Sobolev, Positive linear systems. The method of positive operators, Sigma Ser. Appl. Math., 5, Heldermann-Verlag, Berlin, 1989 | MR | MR | Zbl | Zbl
[56] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1959 ; I. M. Gel'fand, G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York, London, 1964 ; Generalized functions. Vol. 2: Spaces of fundamental and generalized functions, 1968 ; Generalized functions. Vol. 3. Theory of differential equations, 1967 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl
[57] I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, R.I., 1969 | MR | MR | Zbl | Zbl
[58] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: Selfadjoint ordinary differential operators, Transl. Math. Monogr., 39, Amer. Math. Soc., Providence, R.I., 1975 | MR | MR | Zbl | Zbl
[59] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966 | MR | MR | Zbl | Zbl
[60] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser, Basel–Boston–Stuttgart, 1986 | MR | MR | Zbl | Zbl
[61] M. Reed, B. Simon, Methods of modern mathematical physics. II: Harmonic analysis. Selfadjointness, Academic Press, New York–London, 1975 | MR | MR | Zbl
[62] B. M. Levitan, Inverse Sturm–Liouville problems, VNU Science Press, Utrecht, 1987 | MR | MR | Zbl | Zbl
[63] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, Texts and Monogr. Phys., Springer-Verlag, New York, 1988 | MR | MR | Zbl
[64] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Dokl. AN SSSR, 77 (1951), 557–560 | MR | Zbl
[65] B. M. Levitan, “Vychislenie regulyarizovannogo sleda dlya operatora Shturma–Liuvillya”, UMN, 19:1 (1964), 161–165 | MR | Zbl
[66] V. A. Sadovnichii, “O tozhdestvakh dlya sobstvennykh znachenii sistemy Diraka i nekotorykh drugikh sistem vysshego poryadka”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 22:3 (1967), 37–47 | MR | Zbl
[67] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44 | DOI | MR | Zbl
[68] V. F. Lazutkin, T. F. Pankratova, “Asymptotics of the width of gaps in the spectrum of the Sturm–Liouville operator with a periodic potential”, Soviet Dokl. Math., 15 (1974), 649–653 | MR | Zbl
[69] P. Kurasov, “On the Coulomb potentials in one dimension”, J. Phys. A, 29:8 (1996), 1767–1771 | DOI | MR | Zbl
[70] G. V. Radzievskii, “Asymptotics of the eigenvalues of a regular boundary value problem”, Ukrainian Math. J., 48:4 (1997), 537–575 | DOI | MR | Zbl
[71] P. Djakov, B. Mityagin, “Spectra of 1-D periodic Dirac operators and smoothness of potentials”, C. R. Math. Acad. Sci. Soc. R. Can., 25:4 (2003), 121–125 | MR | Zbl
[72] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials”, Inverse Problems, 19:3 (2003), 665–684 | DOI | MR | Zbl
[73] M. G. Gasymov, “Spectral analysis of a class of second-order non-self-adjoint differential operatorsm”, Funct. Anal. Appl., 14:1 (1980), 11–15 | DOI | MR | Zbl
[74] V. A. Mikhailets, “A discreteness criterion for the spectrum of a one-dimensional Schrödinger operator with $\delta$-interactions”, Funct. Anal. Appl., 28:4 (1994), 290–292 | DOI | MR | Zbl
[75] V. A. Vinokurov, V. A. Sadovnichij, “The eigenvalue and trace of the Sturm–Liouville operator as differentiable functions of a summable potential”, Dokl. Math., 59:2 (1999), 220–222 | MR | Zbl
[76] M. I. Neiman-zade, A. A. Shkalikov, “Schrödinger operators with singular potentials from the space of multiplicators”, Math. Notes, 66:5 (1999), 599–607 | DOI | MR | Zbl
[77] E. Korotyaev, “Characterization of the spectrum of Schrödinger operator with periodic distributions”, Int. Math. Res. Not., 2003, no. 37, 2019–2031 | DOI | MR | Zbl
[78] B. S. Mityagin, “Skhodimost razlozhenii po sobstvennym funktsiyam operatora Diraka”, Dokl. RAN, 393:4 (2003), 456–459 | MR
[79] A. P. Khromov, “Integral operators with kernels that are discontinuous on broken lines”, Sb. Math., 197:11 (2006), 1669–1696 | DOI
[80] V. A. Mikhailets, “The structure of the continuous spectrum of a one-dimensional Schrödinger operator with point interactions”, Funct. Anal. Appl., 30:2 (1996), 144–146 | DOI | MR | Zbl
[81] A. M. Savchuk, A. A. Shkalikov, “Trace formula for Sturm–Liouville operators with singular potentials”, Math. Notes, 69:3–4 (2001), 387–400 | DOI | MR | Zbl
[82] A. M. Savchuk, “On the eigenvalues and eigenfunctions of the Sturm–Liouville operator with a singular potential”, Math. Notes, 69:1–2 (2001), 245–252 | DOI | MR | Zbl
[83] J.-G. Bak, A. A. Shkalikov, “Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials”, Math. Notes, 71:5–6 (2002), 587–594 | DOI | MR | Zbl
[84] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials”, Trans. Moscow Math. Soc., 2003, 143–192 | MR | Zbl
[85] A. M. Savchuk, A. A. Shkalikov, “On the eigenvalues of the Sturm–Liouville operator with potentials from Sobolev spaces”, Math. Notes, 80:5–6 (2006), 814–832 | DOI | MR | Zbl
[86] E. A. Shiryaev, A. A. Shkalikov, “Regular and completely regular differential operators”, Math. Notes, 81:3–4 (2007), 566–570 | DOI | MR | Zbl
[87] P. Djakov, B. Mityagin, “Asymptotics of instability zones of Hill operators with a two term potential”, C. R. Math. Acad. Sci. Paris, 339:5 (2004), 351–354 | DOI | MR | Zbl
[88] P. Djakov, B. Mityagin, “Instability zones of a periodic $1D$ Dirac operator and smoothness of its potential”, Comm. Math. Phys., 259:1 (2005), 139–183 | DOI | MR | Zbl
[89] P. Djakov, B. S. Mityagin, “Instability zones of periodic $1$-dimensional Schrödinger and Dirac operators”, Russian Math. Surveys, 61:4 (2007), 663–766 | DOI | MR | Zbl
[90] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials. IV. Potentials in Sobolev space scale”, Proc. Edinb. Math. Soc. (2), 49:2 (2006), 309–329 | DOI | MR | Zbl