Sturm--Liouville oscillation theory for impulsive problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 109-153

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper extends the Sturm–Liouville oscillation theory on the distribution of zeros of eigenfunctions to the case of problems with strong singularities of the coefficients (of $\delta$-function type). For instance, these are problems arising in the study of eigenoscillations of an elastic continuum with concentrated masses and localized interactions with the surrounding medium. The extension of the standard description of the problem is carried out by replacing the usual form of the ordinary differential equation $$ -(pu')'+qu=\lambda mu $$ by the substantially more general form $$ -(pu')(x)+(pu')(0)+\int_0^xu\,dQ=\lambda\int_0^xu\,dM $$ with absolutely continuous solutions whose derivatives, as well as the coefficients $p$, $Q$, $M$, belong to $\operatorname{BV}[0,l]$. The integral is understood in the Stieltjes sense.
@article{RM_2008_63_1_a2,
     author = {Yu. V. Pokornyi and M. B. Zvereva and S. A. Shabrov},
     title = {Sturm--Liouville oscillation theory for impulsive problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {109--153},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_1_a2/}
}
TY  - JOUR
AU  - Yu. V. Pokornyi
AU  - M. B. Zvereva
AU  - S. A. Shabrov
TI  - Sturm--Liouville oscillation theory for impulsive problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 109
EP  - 153
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_1_a2/
LA  - en
ID  - RM_2008_63_1_a2
ER  - 
%0 Journal Article
%A Yu. V. Pokornyi
%A M. B. Zvereva
%A S. A. Shabrov
%T Sturm--Liouville oscillation theory for impulsive problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 109-153
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2008_63_1_a2/
%G en
%F RM_2008_63_1_a2
Yu. V. Pokornyi; M. B. Zvereva; S. A. Shabrov. Sturm--Liouville oscillation theory for impulsive problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 109-153. http://geodesic.mathdoc.fr/item/RM_2008_63_1_a2/