@article{RM_2008_63_1_a1,
author = {S. A. Nazarov},
title = {Korn inequalities for elastic junctions of massive bodies, thin plates, and rods},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {35--107},
year = {2008},
volume = {63},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2008_63_1_a1/}
}
TY - JOUR AU - S. A. Nazarov TI - Korn inequalities for elastic junctions of massive bodies, thin plates, and rods JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 35 EP - 107 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2008_63_1_a1/ LA - en ID - RM_2008_63_1_a1 ER -
S. A. Nazarov. Korn inequalities for elastic junctions of massive bodies, thin plates, and rods. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 35-107. http://geodesic.mathdoc.fr/item/RM_2008_63_1_a1/
[1] A. Korn, “Solution générale du problème d'équilibre dans la théorie de l'élasticité, dans le cas où les efforts sont donnés à la surface”, Ann. Fac. Sci. Toulouse Math. (2), 10 (1908), 165–269 | MR | Zbl
[2] K. O. Friedrichs, “On the boundary-value problems of the theory of elasticity and Korn's inequality”, Ann. of Math. (2), 48:2 (1947), 441–471 | DOI | MR | Zbl
[3] J. Gobert, “Une inégalité fondamentale de la théorie de l'élasticité”, Bull. Soc. Roy. Sci. de Liège, 31 (1962), 182–191 | MR | Zbl
[4] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris; Academia, Prague, 1967 | MR
[5] P. P. Mosolov, V. P. Myasnikov, “A proof of Korn's inequality”, Soviet Math. Dokl., 12 (1971), 1618–1622 | MR | Zbl
[6] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques, 21, Dunod, Paris, 1972 | MR | MR | Zbl | Zbl
[7] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl
[8] B. A. Shoikhet, “On asymptotically exact equations of thin plates of complex structure”, J. Appl. Math. Mech., 37:5 (1973), 867–877 | DOI | MR | Zbl
[9] S. A. Nazarov, “Korn inequalities that are asymptotically exact for thin domains”, Vestnik St. Petersburg Univ. Math., 25 (1992), 18–22 | MR | Zbl | Zbl
[10] S. A. Nazarov, “Obosnovanie asimptoticheskoi teorii tonkikh sterzhnei. Integralnye i potochechnye otsenki”, Problemy matematicheskogo analiza, Vyp. 17, SPbGU, SPb, 1997, 101–152
[11] D. Cioranescu, O. A. Oleinik, G. Tronel, “Korn's inequalities for frame type structures and junctions with sharp estimates for the constants”, Asymptot. Anal., 8:1 (1994), 1–14 | MR | Zbl
[12] S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106 | DOI | MR | Zbl
[13] S. A. Nazarov, A. S. Slutskii, “One-dimensional equations of the deformation of thin slightly curved rods. Asymptotic analysis and justification”, Izv. Math., 64:3 (2000), 531–562 | DOI | MR | Zbl
[14] E. A. Akimova, S. A. Nazarov, G. A. Chechkin, “Asymptotics of the solution of the problem of the deformation of an arbitrary locally periodic thin plate”, Trans. Moscow Math. Soc., 2004, 1–29 | MR
[15] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002 | Zbl
[16] S. A. Nazarov, “Weighted Korn inequalities in paraboloidal domains”, Math. Notes, 62:5 (1997), 629–641 ; РЎ. Рђ. Назаров, “РџРёСЃСЊРјРѕ РІ СЂРμдакцию”, МатРμРј. замРμтки, 63:4 (1998), 640 | DOI | DOI | MR | MR | Zbl
[17] S. A. Nazarov, “Letter to the editor”, Math. Notes, 63:4 (1998), 565 | DOI | DOI | MR | MR | Zbl
[18] S. A. Nazarov, A. S. Slutskii, “Printsip Sen-Venana dlya paraboloidalnykh uprugikh tel”, Problemy matematicheskogo analiza, Vyp. 18, SPbGU, SPb, 1999, 133–180
[19] O. A. Oleinik, G. A. Yosifian, “On the asymptotic behavior at infinity of solutions in linear elasticity”, Arch. Ration. Mech. Anal., 78:1 (1982), 29–53 | DOI | MR | Zbl
[20] D. Cioranescu, O. A. Oleinik, G. Tronel, “On Korn's inequalities for frame type structures and junctions”, C. R. Acad. Sci. Paris Sér. I Math., 309:9 (1989), 591–596 | MR | Zbl
[21] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, “Asymptotic representation of elastic fields in a multi-structure”, Asymptot. Anal., 11:4 (1995), 343–415 | MR | Zbl
[22] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, Asymptotic analysis of fields in multi-structures, Oxford Math. Monogr., Clarendon Press, Oxford, 1999 | MR | Zbl
[23] S. A. Nazarov, “Korn's inequalities for junctions of spatial bodies and thin rods”, Math. Methods Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[24] S. A. Nazarov, “Neravenstvo Korna dlya uprugogo soedineniya tela so sterzhnem”, Problemy mekhaniki deformiruemogo tverdogo tela, SPbGU, SPb, 2002, 234–240 | MR
[25] “Asymptotic analysis and modeling of the junction of a massive body and thin rods”, J. Math. Sci., 127:5 (2003), 2172–2263 | MR
[26] “Asymptotic analysis of an arbitrary spatial system of thin rods”, Proceedings of the St. Petersburg Mathematical Society. Vol. X, Amer. Math. Soc. Ser. 2, 214, Amer. Math. Soc., Providence, R.I., 2005 | MR | Zbl
[27] S. G. Lekhnitskij, Theory of elasticity of an anisotropic body, Mir Publishers, Moscow, 1981 | MR | Zbl | Zbl
[28] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Uchebnoe posobie, Nauka, M., 1988 | Zbl
[29] M. Sh. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Reidel, Dordrecht, 1987 | MR | MR | Zbl
[30] O. A. Oleinik, G. A. Iosifian, A. S. Shamaev, Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990 | MR | Zbl
[31] B. Bernstein, R. A. Toupin, “Korn inequality for the sphere and circle”, Arch. Ration. Mech. Anal., 6 (1960), 51–64 | DOI | MR | Zbl
[32] L. E. Payne, H. F. Weinberger, “On Korn's inequality”, Arch. Ration. Mech. Anal., 8 (1961), 89–98 | DOI | MR | Zbl
[33] C. O. Horgan, “Korn's inequalities and their application in continuum mechanics”, SIAM Rev., 37:4 (1995), 491–511 | DOI | MR | Zbl
[34] V. G. Maz'ya, Sobolev spaces, Springer Ser. Soviet Math., Springer, Berlin, 1985 | MR | MR | Zbl | Zbl
[35] G. Fichera, Existence theorems in elasticity, Springer-Verlag, Berlin, 1972
[36] I. Hlavaček, J. Haslinger, J. Nečas, J. Lovišek, “Solution of variational inequalities in mechanics”, Appl. Math. Sci., 66, Springer-Verlag, New York, 1988 | MR | MR | Zbl
[37] O. A. Oleinik, “Korn's type inequalities and application to elasticity”, International conference in memory of Vito Volterra (Rome, 1990), Atti Convegni Lincei, 92, 1992, 183–209 | MR | Zbl
[38] P. G. Ciarlet, Mathematical elasticity, II: Theory of plates, Studies in Mathematics and its Applications, 27, North-Holland, Amsterdam, 1997 | MR | Zbl
[39] S. A. Nazarov, “Estimates for the second derivatives of eigenvectors for thin anisotropic plates with variable thickness”, J. Math. Sci., 132:1 (2006), 91–102 | DOI | MR | Zbl
[40] S. A. Nazarov, A. S. Slutskii, “Korn's inequality for an arbitrary system of distorted thin rods”, Siberian Math. J., 43:6 (2002), 1069–1073 | DOI | MR | Zbl
[41] S. A. Nazarov, “Weighted anisotropic Korn's inequality for a junction of a plate and a rod”, Sb. Math., 195:4 (2004), 553–583 | DOI | MR | Zbl
[42] E. A. Akimova, S. A. Nazarov, G. A. Chechkin, “The weighted Korn inequality: The“tetris” procedure that serves for an arbitrary periodic plate”, Dokl. Math., 64:2 (2001), 205–207 | MR | Zbl
[43] V. G. Maz'ya, S. A. Nazarov, “Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains”, Math. USSR-Izv., 29:3 (1987), 511–533 | DOI | MR | Zbl
[44] V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, “Fields in non-degenerate 1D–3D elastic multi-structures”, Quart. J. Mech. Appl. Math., 54:2 (2001), 177–212 | DOI | MR | Zbl
[45] S. A. Nazarov, “Junctions problems of bee-on-ceiling type in the theory of anisotropic elasticity”, C. R. Acad. Sci. Paris Sér. I Math., 320:11 (1995), 1419–1424 | MR | Zbl
[46] S. A. Nazarov, “Asymptotics of solutions to the elasticity-theoretic problem for a three-dimensional body with thin branches”, Dokl. Math., 55:1 (1997), 87–90 | MR | Zbl
[47] S. A. Nazarov, “Elliptic boundary value problems in hybrid domains”, Funct. Anal. Appl., 38:4 (2004), 283–297 | DOI | MR | Zbl
[48] I. I. Argatov, S. A. Nazarov, “Equilibrium of an elastic body pierced by horizontal thin elastic bars”, J. Appl. Mech. Tech. Phys., 40:4 (1999), 763–769 | DOI | Zbl
[49] I. I. Argatov, S. A. Nazarov, “Asymptotic analysis of problems in junctions of domains of different limit dimension. An elastic body pierced by thin rods”, J. Math. Sci., Function theory and applications, 102, no. 5, 2000, 4349–4387 | DOI | MR | Zbl
[50] G. P. Panasenko, “Averaging fields in composite materials with high-elastic modulus reinforcement”, Moscow Univ. Comput. Math. Cybernet., 2 (1983), 23–31 | MR | MR | Zbl
[51] G. P. Panasenko, “Multicomponent homogenization for processes in essentially nonhomogeneous structures”, Math. USSR-Sb., 69:1 (1991), 143–153 | DOI | MR | Zbl
[52] N. S. Bakhvalov, G. P. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer, Dordrecht, 1989 | MR | MR | Zbl | Zbl
[53] S. A. Nazarov, “Korn's inequalities for junctions of elastic bodies with thin plates”, Siberian Math. J., 46:4 (2005), 695–706 | DOI | MR | Zbl
[54] D. Caillerie, “The effect of a thin inclusion of high rigidity in an elastic body”, Math. Methods Appl. Sci., 2:3 (1980), 251–270 | DOI | MR | Zbl
[55] P. G. Ciarlet, H. Le Dret, R. Nzengwa, “Modélisation de la jonction entre un corps élastique tridimensionnel et une plaque”, C. R. Acad. Sci. Paris. Sér. I Math., 305:2 (1987), 55–58 | MR | Zbl
[56] M. Aufranc, “Numerical study of a junction between a three-dimensional elastic structure and a plate”, Comput. Methods Appl. Mech. Engrg., 74:2 (1989), 207–222 | DOI | MR | Zbl
[57] D. Leguillon, E. Sanchez-Palencia, “Approximation of a two-dimensional problem of junctions”, Comput. Mech., 6:5–6 (1990), 435–455 | DOI | Zbl
[58] P. G. Ciarlet, Plates and junctions in elastic multi-structures. An asymptotic analysis, Rech. Math. Appliquées, 14, Masson, Paris; Springer, Berlin, 1990 | MR | Zbl
[59] Fiziki prodolzhayut shutit, Mir, M., 1968
[60] A. Gaudiello, R. Monneau, J. Mossino, F. Murat, A. Sili, “On the junction of elastic plates and beams”, C. R. Acad. Sci. Paris. Sér. I Math., 335:8 (2002), 717–722 | DOI | MR | Zbl
[61] O. V. Izotova, S. A. Nazarov, G. H. Sweers, “Weighted Korn inequalities for thin-walled elastic structures”, C. R. Mecanique, 334:12 (2006), 707–712 | DOI
[62] O. V. Izotova, S. A. Nazarov, G. Kh. Svirs, “Asimptoticheski tochnoe vesovoe neravenstvo Korna dlya tonkostennykh uprugikh konstruktsii”, Problemy matematicheskogo analiza, Vyp. 36, Nauchnaya kniga, Novosibirsk, 2007
[63] G. S. Hawkins, J. B. White, Stonehenge Decoded, Doubleday, Garden City, 1965
[64] S. A. Nazarov, A. S. Slutskij, “Arbitrary plane systems of anisotropic beams”, Proc. Steklov Inst. Math., 236:1 (2002), 222–249 | MR | Zbl
[65] N. M. Belyaev, Soprotivlenie materialov, Hauka, M., 1965 | Zbl
[66] H. Le Dret, “Modeling of the junction between two rods”, J. Math. Pures Appl. (9), 68:3 (1989), 365–397 | MR | Zbl
[67] D. Cioranescu, J. Saint Jean Paulin, “Structures très minces en élasticité linéarisée: tours et grillages”, C. R. Acad. Sci. Paris. Sér. I Math., 308:2 (1989), 41–46 | MR | Zbl
[68] H. Le Dret, Problèmes variationnels dans les multi-domains. Modélisation des jonctions et applications, Rech. Math. Appl., 19, Masson, Paris, 1991 | MR | Zbl
[69] D. Cioranescu, J. Saint Jean Paulin, Homogenization of reticulated structures, Appl. Math. Sci., 136, Springer-Verlag, New York, 1999 | MR | Zbl
[70] V. V. Zhikov, “Homogenization of elasticity problems on singular structures”, Izv. Math., 66:2 (2002), 299–365 | DOI | MR | Zbl
[71] G. P. Panasenko, “Asymptotic solutions of a system in the theory of elasticity for rod and frame structures”, Sb. Math., 75:1 (1993), 85–110 | Zbl | Zbl
[72] G. P. Panasenko, “Asymptotic analysis of bar systems. I”, Russian J. Math. Phys., 2:3 (1994), 325–352 ; “Asymptotic analysis of bar systems. II”, Russian J. Math. Phys., 4:1 (1996), 87–116 | MR | Zbl | MR | Zbl
[73] V. V. Zhikov, S. E. Pastukhova, “On Korn inequalities on thin periodic frames”, J. Math. Sci., 123:5 (2004), 4499–4521 | DOI | MR | Zbl
[74] V. V. Zhikov, S. E. Pastukhova, “Derivation of the limit equations of elasticity theory on thin nets”, J. Math. Sci., 135:1 (2006), 2637–2665 | DOI | MR | Zbl
[75] S. A. Nazarov, A. S. Slutskii, “Asymptotics of the frequencies of natural oscillations of elastic beams joined in the form of the letter $\Pi$”, Dokl. Math., 64:2 (2001), 266–269 | MR | Zbl
[76] S. E. Pastukhova, “Homogenization of elasticity problems on periodic box structures of critical thickness”, Dokl. Math., 66:3 (2002), 369–373 | MR | Zbl
[77] V. V. Zhikov, S. E. Pastukhova, “Homogenization for elasticity problems on periodic networks of critical thickness”, Sb. Math., 194:5 (2003), 697–732 | DOI | MR | Zbl
[78] S. E. Pastukhova, “Homogenization of elasticity problems on periodic rod frames of critical thickness”, Dokl. Math., 69:1 (2004), 20–25 | MR | Zbl