Reversibility and irreversibility in stochastic chemical kinetics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 1-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical models with mean field and local type interaction are considered in connection with stochastic chemical kinetics. Special emphasis is placed on various notions of reversibility, their consequences (Boltzmann type equations, fluctuations, Onsager relations, and so on), and the emergence of irreversibility.
@article{RM_2008_63_1_a0,
     author = {V. A. Malyshev and S. A. Pirogov},
     title = {Reversibility and irreversibility in stochastic chemical kinetics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--34},
     year = {2008},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2008_63_1_a0/}
}
TY  - JOUR
AU  - V. A. Malyshev
AU  - S. A. Pirogov
TI  - Reversibility and irreversibility in stochastic chemical kinetics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 1
EP  - 34
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2008_63_1_a0/
LA  - en
ID  - RM_2008_63_1_a0
ER  - 
%0 Journal Article
%A V. A. Malyshev
%A S. A. Pirogov
%T Reversibility and irreversibility in stochastic chemical kinetics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 1-34
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2008_63_1_a0/
%G en
%F RM_2008_63_1_a0
V. A. Malyshev; S. A. Pirogov. Reversibility and irreversibility in stochastic chemical kinetics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 63 (2008) no. 1, pp. 1-34. http://geodesic.mathdoc.fr/item/RM_2008_63_1_a0/

[1] A. Arkin, J. Ross, H. H. McAdams, “Stochastic kinetic analysis of developmental pathway bifurcation in phage $\lambda$-infected Escherichia coli cells”, Genetics, 149:4 (1998), 1633–1648 | MR

[2] H. H. McAdams, A. Arkin, “Stochastic mechanisms in gene expression”, Proc. Natl. Acad. Sci. USA, 94:3 (1997), 814–819 | DOI

[3] Ch. Gadgil, Chang-Hyeong Lee, H. G. Othmer, “A stochastic analysis of first-order reaction networks”, Bull. Math. Biol., 67:5 (2005), 901–946 | DOI | MR

[4] I. V. Berezin, A. A. Klesov, Prakticheskii kurs khimicheskii i fermentativnoi kinetiki, MGU, M., 1978

[5] V. A. Malyshev, S. A. Pirogov, A. N. Rybko, “Random walks and chemical networks”, Mosc. Math. J., 4:2 (2004), 441–453 | MR | Zbl

[6] M. A. Leontovich, “Osnovnye uravneniya kineticheskoi teorii gazov s tochki zreniya teorii sluchainykh protsessov”, ZhETF, 5:3–4 (1935), 211–231 | Zbl

[7] D. A. McQuarrie, “Stochastic approach to chemical kinetics”, J. Appl. Probability, 4:3 (1967), 413–478 | DOI | MR | Zbl

[8] A. V. Kalinkin, “Markov branching processes with interaction”, Russian Math. Surveys, 57:2 (2002), 241–304 | DOI | MR | Zbl

[9] P. Whittle, Systems in stochastic equilibrium, Wiley Ser. Probab. Math. Stat.: Appl. Probab. Stat., Wiley, Chichester, 1986 | MR | Zbl

[10] R. D. Nelson, “The mathematics of product form queueing networks”, ACM Comput. Service, 25:3 (1993), 339–369 | DOI

[11] F. P. Kelly, Reversibility and stochastic networks, Wiley Ser. Probab. Math. Stat.: Appl. Probab. Stat., Wiley, Chichester, 1979 | MR | Zbl

[12] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, t. 10: Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[13] V. A. Malyshev, “Microscopic models for chemical thermodynamics”, J. Stat. Phys., 119:5–6 (2005), 997–1026 | DOI | MR | Zbl

[14] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[15] Ya. G. Batischeva, V. V. Vedenyapin, “Vtoroi zakon termodinamiki dlya khimicheskoi kinetiki”, Matem. modelirovanie, 17:8 (2005), 106–110 | MR | Zbl

[16] M. V. Volkenshtein, Physics and biology, Academic Press, New York, 1982

[17] J. D. Murray, Lectures on nonlinear differential equation models in biology, Clarendon Press. XIII, Oxford, England, 1977 | Zbl | Zbl

[18] S. N. Ethier, Th. G. Kurtz, Markov processes. Characterization and convergence, Wiley Ser. Probab. Math. Stat.: Appl. Probab. Stat., Wiley, New York, 1986 | MR | Zbl

[19] K. Ball, Th. G. Kurtz, L. Popovic, G. Rempala, “Asymptotic analysis of multiscale approximations to reaction networks”, Ann. Appl. Probab., 16:4 (2006), 1925–1961 ; arXiv: math/0508015 | DOI | MR | Zbl

[20] H. Spohn, Fluctuation theory for the Boltzmann equation, Stud. Statist. Mech., 10, North-Holland, Amsterdam, 1983 | MR | Zbl

[21] V. A. Malyshev, “Fixed points for stochastic open chemical systems”, Markov Process. Related Fields, 11:2 (2005), 337–354 | MR | Zbl

[22] G. Fayolle, V. Malyshev, S. Pirogov, “Stochastic chemical kinetics with energy parameters”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 517–529 | MR | Zbl

[23] V. A. Malyshev, “Dynamical clusters of infinite particle dynamics”, J. Math. Phys., 46:7 (2005), 073302 | DOI | MR | Zbl

[24] O. E. Lanford, “Time evolution of large classical systems”, Dynamical systems, theory and applications (Seattle, 1974), Lecture Notes in Phys., 38, Springer, Berlin, 1975, 1–111 | MR | Zbl

[25] H. Spohn, “Large scale dynamics of interacting particles”, Texts Monogr. Phys., Springer, Berlin, 1991 | Zbl

[26] E. Caglioti, C. Marchioro, M. Pulvirenti, “Non-equilibrium dynamics of three-dimensional infinite particle systems”, Comm. Math. Phys., 215:1 (2000), 25–43 | DOI | MR | Zbl

[27] S. Caprino, M. Pulvirenti, “A cluster expansion approach to a one-dimensional Boltzmann equation: a validity result”, Comm. Math. Phys., 166:3 (1995), 603–631 | DOI | MR | Zbl

[28] S. Caprino, M. Pulvirenti, “The Boltzmann–Grad limit for a one-dimensional Boltzmann equation in a stationary state”, Comm. Math. Phys., 177:1 (1996), 63–81 | DOI | MR | Zbl

[29] S. Caprino, M. Pulvirenti, W. Wagner, “Stationary particle systems approximating stationary solutions to the Boltzman equation”, SIAM J. Math. Anal., 29:4 (1998), 913–934 | DOI | MR | Zbl

[30] C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, Appl. Math. Sci., 106, Springer, New York, 1994 | MR | Zbl

[31] C. Cercignani, V. I. Gerasimenko, D. Ya. Petrina, Many-particle dynamics and kinetic equations, Math. Appl., 420, Kluwer, Dordrecht, 1997 | MR | Zbl

[32] A. DeMasi, R. Esposito, J. L. Lebowitz, E. Presutti, “Hydrodynamics of stochastic cellular automata”, Comm. Math. Phys., 125:1 (1989), 127–145 | DOI | MR | Zbl

[33] L. Arnold, M. Theodosopulu, “Deterministic limit of the stochastic model of chemical reactions with diffusion”, Adv. Appl. Probab., 12:2 (1980), 367–379 | DOI | MR | Zbl

[34] M. Bramson, J. Lebowitz, “Spatial structure in low dimensions for diffusion limited two-particle reactions”, Ann. Appl. Probab., 11:1 (2001), 121–181 | DOI | MR | Zbl

[35] K. Hepp, “Results and problems in irreversible statistical mechanics of open systems”, International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), Lecture Notes in Phys., 39, Springer, Berlin, 1975, 138–150 | MR | MR

[36] M. Reed, B. Simon, Methods of modern mathematical physics. Scattering theory, III, Academic Press, New York–London, 1979 | MR | MR | Zbl | Zbl

[37] V. M. Alekseev, Lektsii po nebesnoi mekhanike, Regulyarnaya i khaoticheskaya dinamika, NITTs, M., 2001 | Zbl