Hurwitz curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 6, pp. 1043-1119

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is a survey of recent results about Hurwitz curves, their braid monodromy invariants, and their applications to $H$-isotopy and regular homotopy problems. The second part of the survey is devoted to a discussion of the applicability of braid monodromy invariants of branch curves for generic coverings of the projective plane as invariants distinguishing connected components of the moduli space of algebraic surfaces (in the algebraic case) and distinguishing symplectic structures on four-dimensional varieties (in the symplectic case).
@article{RM_2007_62_6_a0,
     author = {Vik. S. Kulikov},
     title = {Hurwitz curves},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1043--1119},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_6_a0/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Hurwitz curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 1043
EP  - 1119
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_6_a0/
LA  - en
ID  - RM_2007_62_6_a0
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Hurwitz curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 1043-1119
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2007_62_6_a0/
%G en
%F RM_2007_62_6_a0
Vik. S. Kulikov. Hurwitz curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 6, pp. 1043-1119. http://geodesic.mathdoc.fr/item/RM_2007_62_6_a0/