The algebraic Bethe ansatz and quantum integrable systems
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 4, pp. 727-766
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Methods are considered for applying an algebra with bilinear commutation relations to the theory of quantum integrable systems. This survey describes most of the results obtained in this area over the last twenty years, mainly in connection with the computation of correlation functions of quantum integrable systems. Methods for constructing eigenfunctions of the quantum transfer matrix and computing inner products and correlation functions are presented in detail. An example of application of the general scheme to the model of the $X\!X\!Z$ Heisenberg chain is considered.
			
            
            
            
          
        
      @article{RM_2007_62_4_a3,
     author = {N. A. Slavnov},
     title = {The algebraic {Bethe} ansatz and quantum integrable systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {727--766},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_4_a3/}
}
                      
                      
                    N. A. Slavnov. The algebraic Bethe ansatz and quantum integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 4, pp. 727-766. http://geodesic.mathdoc.fr/item/RM_2007_62_4_a3/
