@article{RM_2007_62_4_a3,
author = {N. A. Slavnov},
title = {The algebraic {Bethe} ansatz and quantum integrable systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {727--766},
year = {2007},
volume = {62},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2007_62_4_a3/}
}
N. A. Slavnov. The algebraic Bethe ansatz and quantum integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 4, pp. 727-766. http://geodesic.mathdoc.fr/item/RM_2007_62_4_a3/
[1] H. Bethe, “Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys., 71:3–4 (1931), 205–226 | DOI | Zbl
[2] L. Hulthén, “Über das Austauschproblem eines Kristalls”, Ark. Mat. Astron. Fysik, 26, no. 11, 1938, 1–106 | Zbl
[3] R. Orbach, “Linear antiferromagnetic chain with anisotropic coupling”, Phys. Rev., 112:2 (1958), 309–316 | DOI
[4] L. R. Walker, “Antiferromagnetic linear chain”, Phys. Rev., 116:5 (1959), 1089–1090 | DOI
[5] E. H. Lieb, W. Liniger, “Exact analysis of an interacting Bose gas. I. The general solution and the ground state”, Phys. Rev., 130:4 (1963), 1605–1616 | DOI | MR | Zbl
[6] E. H. Lieb, D. C. Mattis (eds.), Mathematical physics in one dimension: exactly soluble models of interacting particles, Academic Press, New York, 1966
[7] C. N. Yang, C. P. Yang, “One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe's hypothesis for ground state in a finite system”, Phys. Rev., 150:1 (1966), 321–327 ; “II. Properties of the ground state energy per lattice site in a finite system”, 327–339 | DOI | DOI | Zbl
[8] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsiv delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR | Zbl
[9] J. des Cloizeaux, M. Gaudin, “Anisotropic linear magnetic chain”, J. Math. Phys., 7:8 (1966), 1384–1400 | DOI
[10] M. Gaudin, La fonction d'onde de Bethe, Collect. Commissariat Energ. Atom. Ser. Sci., Masson, Paris, 1983 ; M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR | Zbl | MR
[11] F. A. Berezin, V. N. Sushko, “Relyativistskaya dvumernaya model samovzaimodeistvuyuschego polya nenulevoi massy pokoya”, ZhETF, 45 (1965), 1293–1306
[12] E. H. Lieb, F. Y. Wu, “Absence of Mott transition in an exact solution of the short range one band model in one dimension”, Phys. Rev. Lett., 20:25 (1968), 1445–1448 | DOI
[13] L. Onsager, “Cristal statistics. I. A two-dimensional model with an order-disorder transition”, Phys. Rev., 65:3–4 (1944), 117–149 | DOI | MR | Zbl
[14] T. T. Wu, B. M. McCoy, C. A. Tracy, E. Barouch, “Spin-spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region”, Phys. Rev. B, 13:1 (1976), 316–374 | DOI | MR
[15] B. M. McCoy, C. A. Tracy, T. T. Wu, “Two-dimensional Ising model as an exactly solvable relativistic quantum field theory: explicit formulas for $n$-point functions”, Phys. Rev. Lett., 38:15 (1977), 793–796 | DOI
[16] E. Lieb, T. Shultz, D. Mattis, “Two soluble models of an antiferromagnetic chain”, Ann. Physics, 16:3 (1961), 407–466 | DOI | MR | Zbl
[17] B. M. McCoy, “Spin correlation functions of the $X-Y$ model”, Phys. Rev., 173:2 (1968), 531–541 | DOI
[18] A. Lenard, “Momentum distribution in the ground state of the one-dimensional system of impenetrable bosons”, J. Math. Phys., 5:7 (1964), 930–943 | DOI | MR
[19] A. Lenard, “One-dimensional impenetrable bosons in thermal equilibrium”, J. Math. Phys., 7:7 (1966), 1268–1272 | DOI | MR
[20] H. G. Vaidya, C. A. Tracy, “One particle reduced density matrix of impenetrable bosons in one dimension at zero temperature”, Phys. Rev. Lett., 42:1 (1979), 3–6 | DOI
[21] F. Kolomo, A. G. Izergin, V. E. Korepin, V. Tognetti, “Temperaturnye korrelyatsionnye funktsii v $XXO$-tsepochke Geizenberga. I”, TMF, 94:1 (1993), 19–51 | MR
[22] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5 (1979), 13–63 | MR
[23] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | MR
[24] L. D. Faddeev, “How algebraic Bethe ansatz works for integrable models”, Symétries quantiques (Les Houches, France, 1995), eds. A. Connes et al., North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl
[25] N. Kitanine, J. M. Maillet, V. Terras, “Form factors of the $XXZ$ Heisenberg spin-$1/2$ finite chain”, Nuclear Phys. B, 554:3 (1999), 647–678 ; arXiv: math-ph/9807020 | DOI | MR | Zbl
[26] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable quantum field theories (Tvärminne, Finland, 1981), Lecture Notes in Phys., 151, eds. J. Heitarinta, C. Montonen, Springer, Berlin–New York, 1982, 61–119 | MR | Zbl
[27] A. G. Izergin, V. E. Korepin, “The quantum inverse scattering method approach to correlation functions”, Comm. Math. Phys., 94:1 (1984), 67–92 | DOI | MR | Zbl
[28] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl
[29] V. E. Korepin, “Analiz bilineinogo sootnosheniya shestivershinnoi modeli”, DAN SSSR, 265:6 (1982), 1361–1364 | MR
[30] A. G. Izergin, “Statisticheskaya summa shestivershinnoi modeli v konechnom ob'eme”, Dokl. AN SSSR, 297:2 (1987), 331–333 | MR | Zbl
[31] L. D. Faddeev, “History and perspectives of quantum groups”, Milan J. Math., 74:1 (2006), 279–294 | DOI | MR | Zbl
[32] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[33] E. K. Sklyanin, “Metod obratnoi zadachi rasseyaniya i kvantovoe nelineinoe uravneniya Shrëdingera”, Dokl. AN SSSR, 244:6 (1979), 1337–1340 | MR
[34] E. K. Sklyanin, L. D. Faddeev, “Kvantovomekhanicheskii podkhod k vpolne integriruemym modelyam teorii polya”, Dokl. AN SSSR, 243:6 (1978), 1430–1433
[35] A. G. Izergin, V. E. Korepin, “Pauli principal for one-dimensional bosons and the algebraic Bethe anstaz”, Lett. Math. Phys., 6:4 (1982), 283–288 | DOI | MR
[36] V. Tarasov, A. Varchenko, “Bases of Bethe vectors and difference equations with regular singular points”, Internat. Math. Res. Notices, 1995, no. 13, 637–669 | DOI | MR | Zbl
[37] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Master equation for spin-spin correlation functions of the $XXZ$ chain”, Nucl. Phys. B, 712:3 (2005), 600–622 ; arXiv: hep-th/0406190 | DOI | MR | Zbl
[38] N. A. Slavnov, “Vychislenie skalyarnykh proizvedenii volnovykh funktsii i formfaktorov v algebraicheskom anzatse Bete”, TMF, 79:2 (1989), 232–240 | MR
[39] N. A. Slavnov, “Ob odnom tozhdestve dlya dualnykh polei”, Zapiski nauch. sem. POMI, 245 (1997), 270–281 ; N. A. Slavnov, “On an identity for dual fields”, J. Math. Sci. (New York), 100:2 (2000), 2181–2188 | MR | Zbl | DOI
[40] N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “On correlation functions of integrable models associated with the six-vertex $R$-matrix”, J. Stat. Mech., 2007, no. 1, P01022 ; arXiv: hep-th/0611142 | DOI | MR
[41] W. Heisenberg, “Zur Theorie des Ferromagnetismus”, Z. Phys., 49:9–10 (1928), 619–636 | DOI | Zbl
[42] P. P. Kulish, E. K. Sklyanin, “Quantum inverse scattering method and the Heisenberg ferromagnet”, Phys. Lett., 70:5–6 (1979), 461–463 | DOI | MR
[43] P. P. Kulish, “Kvantovyi metod obratnoi zadachi i tochno reshaemye modeli statisticheskoi fiziki”, Trudy II Mezhdunarodnogo simpoziuma po izbrannym problemam statisticheskoi fiziki, Dubna, 1981, 147–157
[44] A. G. Izergin, V. E. Korepin, “Correlation functions for the Heisenberg $XXZ$-antiferromagnet”, Comm. Math. Phys., 99:2 (1985), 271–302 | DOI | MR | Zbl
[45] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Spin-spin correlation functions of the $XXZ-1/2$ Heisenberg chain in a magnetic field”, Nucl. Phys. B, 641:3 (2002), 487–518 ; arXiv: hep-th/0201045 | DOI | MR | Zbl
[46] N. Kitanine, J. M. Maillet, V. Terras, “Correlation functions of the $XXZ$ Heisenberg spin-$1/2$ chain in a magnetic field”, Nucl. Phys. B, 567:3 (2000), 554–582 ; arXiv: math-ph/9907019 | DOI | MR | Zbl
[47] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Emptiness formation probability of the $XXZ$ spin-$1/2$ Heisenberg chain at $\Delta=1/2$”, J. Phys. A, 35:27 (2002), L385–L388 ; arXiv: hep-th/0201134 | DOI | MR | Zbl
[48] G. Kuperberg, “Another proof of the alternating sign matrix conjecture”, Internat. Math. Res. Notices, 1996, no. 3, 139–150 ; arXiv: math.CO/9712207 | DOI | MR | Zbl
[49] A. Razumov, Yu. Stroganov, “Spin chains and combinatorics”, J. Phys. A, 34:14 (2001), 3185–3190 ; arXiv: cond-mat/0012141 | DOI | MR | Zbl
[50] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Physics, 70:1 (1972), 193–228 | DOI | MR | Zbl
[51] R. J. Baxter, “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors”, Ann. Physics, 76:1 (1973), 1–24 ; “II. Equivalence to a generalized ice-type lattice model”, 25–47 ; “III. Eigenvectors of the transfer matrix and hamiltonian”, 48–71 | DOI | Zbl | DOI | Zbl | DOI | Zbl