@article{RM_2007_62_4_a22,
author = {V. A. Zorich},
title = {Global homeomorphism theorem for conformally hyperbolic manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {826--828},
year = {2007},
volume = {62},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2007_62_4_a22/}
}
V. A. Zorich. Global homeomorphism theorem for conformally hyperbolic manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 4, pp. 826-828. http://geodesic.mathdoc.fr/item/RM_2007_62_4_a22/
[1] M. A. Lavrentev, Dokl. AN SSSR, 20:4 (1938), 241–242 | Zbl
[2] V. A. Zorich, Matem. sb., 74:3 (1967), 417–433 | MR | Zbl
[3] V. A. Zorich, Quasiconformal space mappings, Lecture Notes in Math., 1508, Springer, Berlin, 1992, 132–148 | MR | Zbl
[4] V. A. Zorich, UMN, 57:3 (2002), 3–28 | DOI | MR | Zbl
[5] M. Gromov, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (Stony Brook, 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 183–213 | MR | Zbl
[6] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., 152, Birkhäuser, Boston, 1999 | MR | Zbl
[7] V. A. Zorich, Funkts. analiz i ego prilozh., 34:3 (2000), 37–48 | DOI | MR | Zbl
[8] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl
[9] T. Iwaniec, L. Migliaccio, L. Nania, C. Sbordone, Math. Scand., 75:2 (1994), 263–279 | MR | Zbl
[10] V. A. Zorich, UMN, 56:4 (2001), 147–148 | DOI | MR | Zbl