Limit behaviour of large Frobenius numbers
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 4, pp. 713-725
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This is an investigation of the problem of the asymptotic distribution of the Frobenius numbers of $n$ relatively prime integers. For $n=3$ virtually definitive results are obtained. For $n>3$ it is shown that the distributions appearing form a compact set. An essential role is played by the limit theorem for logarithms of denominators of continued fractions of random numbers.
			
            
            
            
          
        
      @article{RM_2007_62_4_a2,
     author = {J. Bourgain and Ya. G. Sinai},
     title = {Limit behaviour of large {Frobenius} numbers},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {713--725},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_4_a2/}
}
                      
                      
                    J. Bourgain; Ya. G. Sinai. Limit behaviour of large Frobenius numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 4, pp. 713-725. http://geodesic.mathdoc.fr/item/RM_2007_62_4_a2/
