@article{RM_2007_62_4_a1,
author = {C. Boldrighini and R. A. Minlos and A. Pellegrinotti},
title = {Random walks in a~random (fluctuating) environment},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {663--712},
year = {2007},
volume = {62},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2007_62_4_a1/}
}
TY - JOUR AU - C. Boldrighini AU - R. A. Minlos AU - A. Pellegrinotti TI - Random walks in a random (fluctuating) environment JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2007 SP - 663 EP - 712 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2007_62_4_a1/ LA - en ID - RM_2007_62_4_a1 ER -
C. Boldrighini; R. A. Minlos; A. Pellegrinotti. Random walks in a random (fluctuating) environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 4, pp. 663-712. http://geodesic.mathdoc.fr/item/RM_2007_62_4_a1/
[1] O. Zeitouni, “Random walks in random environment”, Lectures on probability theory and statistics (Saint-Flour, 2001), Lecture Notes in Math., 1837, ed. J. Picard, Springer, Berlin, 2004, 189–312 | MR | Zbl
[2] F. Rassoul-Agha, T. Seppalainen, “An almost sure invariance principle for random walks in a space-time random environment”, Probab. Theory Related Fields, 133:3 (2005), 299–314 | DOI | MR | Zbl
[3] J. Bérard, “The almost sure central limit theorem for one-dimensional nearest-neighbour random walks in a space-time random environment”, J. Appl. Probab., 41:1 (2004), 83–92 | DOI | MR | Zbl
[4] A. Bandyopadhyay, O. Zeitouni, “Random walk in dynamic Markovian random environment”, ALEA Lat. Amer. J. Probab. Math. Stat., 1 (2006), 205–224 | MR | Zbl
[5] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Almost-sure central limit theorem for directed polymers and random corrections”, Comm. Math. Phys., 189:2 (1997), 533–557 | DOI | MR | Zbl
[6] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, t. 1, Nauka, M., 1971 ; I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, Vol. 1, Grundlehren Math. Wiss., 210, Springer, Berlin, 1974 | MR | Zbl | MR | Zbl
[7] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive”, Probab. Theory Related Fields, 129:1 (2004), 133–156 | DOI | MR | Zbl
[8] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Almost-sure central limit theorem for a Markov model of random walk in dynamical environment”, Probab. Theory Related Fields, 109:2 (1997), 245–273 | DOI | MR | Zbl
[9] M. S. Barnabei, C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Almost-sure central limit theorem for a model of random walk in fluctuating random environment”, Markov Process. Related Fields, 4:3 (1998), 381–394 | MR | Zbl
[10] C. Boldrighini, A. Pellegrinotti, “$T^{-1/4}$-noise for random walks in dynamic environment on $\mathbb Z$”, Mosc. Math. J., 1:3 (2001), 365–380 | MR | Zbl
[11] M. S. Bernabei, “Anomalous behaviour for random corrections to the cumulants of random walks in fluctuating random media”, Probab. Theory Related Fields, 119:3 (2001), 410–432 | DOI | MR | Zbl
[12] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Central limit theorem for a random walk in dynamical environment: integral and local”, Theory Stoch. Process., 5(21):3–4 (1999), 16–28 | MR | Zbl
[13] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 ; M. S. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, Kluwer, Dordrecht, 1987 | MR | MR | Zbl
[14] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matem. biblioteka, Nauka, M., 1987 | MR | Zbl
[15] C. Boldrighini, I. A. Ignatyuk, V. A. Malyshev, A. P. Pellegrinotti, “Random walk in dynamic environment with mutual influence”, Stochastic Process. Appl., 41:1 (1992), 157–177 | DOI | MR | Zbl
[16] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Central limit theorem for the random walk of one and two particles in a random environment, with mutual interaction”, Probability contributions to statistical mechanics, Adv. Soviet Math., 20, Amer. Math. Soc., Providence, 1994, 26–75 | MR | Zbl
[17] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Interacting random walk in a dynamical random environment. I: Decay of correlations”, Ann. Inst. H. Poincaré Probab. Statist., 30:4 (1994), 519–558 ; “II: Environment from the point of view of the particle”, 559–605 | MR | Zbl | MR | Zbl
[18] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Asymptotic decay of correlations for fluctuating environment in interacting with two-particle random walk”, Boll. Un. Mat. Ital. B (7), 10:2 (1996), 277–302 | MR | Zbl
[19] C. Boldrighini, R. A. Minlos, F. R. Nardi, A. Pellegrinotti, “Asymptotic decay of correlations for a random walk in interaction with a Markov field”, Mosc. Math. J., 5:3 (2005), 507–522 | MR | Zbl
[20] I. Ignatiouk-Robert, “Large deviations for a random walk in dynamical random environment”, Ann. Inst. H. Poincaré Probab. Statist., 34:5 (1998), 601–636 | DOI | MR | Zbl
[21] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Random walk in fluctuating random environment with Markov evolution”, On Dobrushin's way. From probability theory to statistical physics, Amer. Math. Soc. Transl. Ser. 2, 198, Amer. Math. Soc., Providence, 2000, 13–35 | MR | Zbl
[22] V. A. Malyshev, R. A. Minlos, Lineinye operatory v beskonechnochastichnykh sistemakh, Nauka, M., 1994 ; V. A. Malyshev, R. A. Minlos, Linear infinite-particle operators, Transl. Math. Monogr., 143, Amer. Math. Soc., Providence, 1995 | Zbl | MR | Zbl
[23] V. A. Malyshev, R. A. Minlos, Gibbsovskie sluchainye polya. Metod klasternykh razlozhenii, Nauka, M., 1985 ; V. A. Malyshev, R A. Minlos, Gibbs random fields. Cluster expansions, Math. Appl. (Soviet Ser.), 44, Dordrecht, Kluwer, 1991 | MR | Zbl | MR | Zbl
[24] Dzh. Milnor, Teoriya Morsa, Mir, M., 1965 ; J. Milnor, Morse theory, Ann. Math. Stud., 51, Princeton Univ. Press, Princeton, 1963 | MR | MR | Zbl
[25] O. Ore, Teoriya grafov, Nauka, M., 1980 ; O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Amer. Math. Soc., Providence, 1962 | MR | Zbl | MR | Zbl