Random walks in a random (fluctuating) environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 4, pp. 663-712 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main purpose of this paper is to prove the central limit theorem for the position at large times of a particle performing a discrete-time random walk on the lattice $\mathbb Z^d$ when the particle interacts with a random ‘environment’ (and starts out at a fixed point of the lattice). Two cases are considered for the distribution of the particle position: first, the distribution when the configuration of the ‘environment’ (that is, of the random field) is fixed at all points of the ‘space-time’ $\mathbb Z^{d+1}$ (the so-called quenched model), and, second, the distribution induced by the joint evolution of the environment and the particle position under the assumption that the pair forms a Markov chain (the annealed model). Two cases are considered also for the quenched model: the values of the field at all points of ‘space-time’ are independent and identically distributed, or the values of the field at different times are linked by a homogeneous Markov chain. In the case of quenched models the central limit theorem with one and the same limit law is true for almost all configurations of the ‘environment’, and in the case of annealed models it is true for any initial distribution of the field. Besides the central limit theorem, the paper briefly treats some other topics related to these models (decay of correlations, large deviations, ‘the field from the viewpoint of a particle’, and so on).
@article{RM_2007_62_4_a1,
     author = {C. Boldrighini and R. A. Minlos and A. Pellegrinotti},
     title = {Random walks in a~random (fluctuating) environment},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {663--712},
     year = {2007},
     volume = {62},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_4_a1/}
}
TY  - JOUR
AU  - C. Boldrighini
AU  - R. A. Minlos
AU  - A. Pellegrinotti
TI  - Random walks in a random (fluctuating) environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 663
EP  - 712
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_4_a1/
LA  - en
ID  - RM_2007_62_4_a1
ER  - 
%0 Journal Article
%A C. Boldrighini
%A R. A. Minlos
%A A. Pellegrinotti
%T Random walks in a random (fluctuating) environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 663-712
%V 62
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2007_62_4_a1/
%G en
%F RM_2007_62_4_a1
C. Boldrighini; R. A. Minlos; A. Pellegrinotti. Random walks in a random (fluctuating) environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 4, pp. 663-712. http://geodesic.mathdoc.fr/item/RM_2007_62_4_a1/

[1] O. Zeitouni, “Random walks in random environment”, Lectures on probability theory and statistics (Saint-Flour, 2001), Lecture Notes in Math., 1837, ed. J. Picard, Springer, Berlin, 2004, 189–312 | MR | Zbl

[2] F. Rassoul-Agha, T. Seppalainen, “An almost sure invariance principle for random walks in a space-time random environment”, Probab. Theory Related Fields, 133:3 (2005), 299–314 | DOI | MR | Zbl

[3] J. Bérard, “The almost sure central limit theorem for one-dimensional nearest-neighbour random walks in a space-time random environment”, J. Appl. Probab., 41:1 (2004), 83–92 | DOI | MR | Zbl

[4] A. Bandyopadhyay, O. Zeitouni, “Random walk in dynamic Markovian random environment”, ALEA Lat. Amer. J. Probab. Math. Stat., 1 (2006), 205–224 | MR | Zbl

[5] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Almost-sure central limit theorem for directed polymers and random corrections”, Comm. Math. Phys., 189:2 (1997), 533–557 | DOI | MR | Zbl

[6] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, t. 1, Nauka, M., 1971 ; I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, Vol. 1, Grundlehren Math. Wiss., 210, Springer, Berlin, 1974 | MR | Zbl | MR | Zbl

[7] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Random walks in quenched i.i.d. space-time random environment are always a.s. diffusive”, Probab. Theory Related Fields, 129:1 (2004), 133–156 | DOI | MR | Zbl

[8] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Almost-sure central limit theorem for a Markov model of random walk in dynamical environment”, Probab. Theory Related Fields, 109:2 (1997), 245–273 | DOI | MR | Zbl

[9] M. S. Barnabei, C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Almost-sure central limit theorem for a model of random walk in fluctuating random environment”, Markov Process. Related Fields, 4:3 (1998), 381–394 | MR | Zbl

[10] C. Boldrighini, A. Pellegrinotti, “$T^{-1/4}$-noise for random walks in dynamic environment on $\mathbb Z$”, Mosc. Math. J., 1:3 (2001), 365–380 | MR | Zbl

[11] M. S. Bernabei, “Anomalous behaviour for random corrections to the cumulants of random walks in fluctuating random media”, Probab. Theory Related Fields, 119:3 (2001), 410–432 | DOI | MR | Zbl

[12] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Central limit theorem for a random walk in dynamical environment: integral and local”, Theory Stoch. Process., 5(21):3–4 (1999), 16–28 | MR | Zbl

[13] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 ; M. S. Birman, M. Z. Solomyak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, Kluwer, Dordrecht, 1987 | MR | MR | Zbl

[14] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matem. biblioteka, Nauka, M., 1987 | MR | Zbl

[15] C. Boldrighini, I. A. Ignatyuk, V. A. Malyshev, A. P. Pellegrinotti, “Random walk in dynamic environment with mutual influence”, Stochastic Process. Appl., 41:1 (1992), 157–177 | DOI | MR | Zbl

[16] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Central limit theorem for the random walk of one and two particles in a random environment, with mutual interaction”, Probability contributions to statistical mechanics, Adv. Soviet Math., 20, Amer. Math. Soc., Providence, 1994, 26–75 | MR | Zbl

[17] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Interacting random walk in a dynamical random environment. I: Decay of correlations”, Ann. Inst. H. Poincaré Probab. Statist., 30:4 (1994), 519–558 ; “II: Environment from the point of view of the particle”, 559–605 | MR | Zbl | MR | Zbl

[18] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Asymptotic decay of correlations for fluctuating environment in interacting with two-particle random walk”, Boll. Un. Mat. Ital. B (7), 10:2 (1996), 277–302 | MR | Zbl

[19] C. Boldrighini, R. A. Minlos, F. R. Nardi, A. Pellegrinotti, “Asymptotic decay of correlations for a random walk in interaction with a Markov field”, Mosc. Math. J., 5:3 (2005), 507–522 | MR | Zbl

[20] I. Ignatiouk-Robert, “Large deviations for a random walk in dynamical random environment”, Ann. Inst. H. Poincaré Probab. Statist., 34:5 (1998), 601–636 | DOI | MR | Zbl

[21] C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Random walk in fluctuating random environment with Markov evolution”, On Dobrushin's way. From probability theory to statistical physics, Amer. Math. Soc. Transl. Ser. 2, 198, Amer. Math. Soc., Providence, 2000, 13–35 | MR | Zbl

[22] V. A. Malyshev, R. A. Minlos, Lineinye operatory v beskonechnochastichnykh sistemakh, Nauka, M., 1994 ; V. A. Malyshev, R. A. Minlos, Linear infinite-particle operators, Transl. Math. Monogr., 143, Amer. Math. Soc., Providence, 1995 | Zbl | MR | Zbl

[23] V. A. Malyshev, R. A. Minlos, Gibbsovskie sluchainye polya. Metod klasternykh razlozhenii, Nauka, M., 1985 ; V. A. Malyshev, R A. Minlos, Gibbs random fields. Cluster expansions, Math. Appl. (Soviet Ser.), 44, Dordrecht, Kluwer, 1991 | MR | Zbl | MR | Zbl

[24] Dzh. Milnor, Teoriya Morsa, Mir, M., 1965 ; J. Milnor, Morse theory, Ann. Math. Stud., 51, Princeton Univ. Press, Princeton, 1963 | MR | MR | Zbl

[25] O. Ore, Teoriya grafov, Nauka, M., 1980 ; O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ., 38, Amer. Math. Soc., Providence, 1962 | MR | Zbl | MR | Zbl