Local regularity for suitable weak solutions of the Navier--Stokes equations
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 595-614
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A class of conditions sufficient for local regularity of suitable weak solutions of the non-stationary three-dimensional Navier–Stokes equations is discussed. The corresponding results are formulated in terms of functionals invariant with respect to the scaling of the Navier–Stokes equations. The well-known Caffarelli–Kohn–Nirenberg condition is contained in the class as a particular case.
			
            
            
            
          
        
      @article{RM_2007_62_3_a8,
     author = {G. A. Seregin},
     title = {Local regularity for suitable weak solutions of the {Navier--Stokes} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {595--614},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a8/}
}
                      
                      
                    TY - JOUR AU - G. A. Seregin TI - Local regularity for suitable weak solutions of the Navier--Stokes equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2007 SP - 595 EP - 614 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a8/ LA - en ID - RM_2007_62_3_a8 ER -
G. A. Seregin. Local regularity for suitable weak solutions of the Navier--Stokes equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 595-614. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a8/
