Local regularity for suitable weak solutions of the Navier--Stokes equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 595-614

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of conditions sufficient for local regularity of suitable weak solutions of the non-stationary three-dimensional Navier–Stokes equations is discussed. The corresponding results are formulated in terms of functionals invariant with respect to the scaling of the Navier–Stokes equations. The well-known Caffarelli–Kohn–Nirenberg condition is contained in the class as a particular case.
@article{RM_2007_62_3_a8,
     author = {G. A. Seregin},
     title = {Local regularity for suitable weak solutions of the {Navier--Stokes} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {595--614},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a8/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - Local regularity for suitable weak solutions of the Navier--Stokes equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 595
EP  - 614
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a8/
LA  - en
ID  - RM_2007_62_3_a8
ER  - 
%0 Journal Article
%A G. A. Seregin
%T Local regularity for suitable weak solutions of the Navier--Stokes equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 595-614
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a8/
%G en
%F RM_2007_62_3_a8
G. A. Seregin. Local regularity for suitable weak solutions of the Navier--Stokes equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 595-614. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a8/