@article{RM_2007_62_3_a7,
author = {P. I. Plotnikov and J. Sokolowski},
title = {Stationary solutions of {Navier{\textendash}Stokes} equations for diatomic gases},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {561--593},
year = {2007},
volume = {62},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a7/}
}
TY - JOUR AU - P. I. Plotnikov AU - J. Sokolowski TI - Stationary solutions of Navier–Stokes equations for diatomic gases JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2007 SP - 561 EP - 593 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a7/ LA - en ID - RM_2007_62_3_a7 ER -
P. I. Plotnikov; J. Sokolowski. Stationary solutions of Navier–Stokes equations for diatomic gases. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 561-593. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a7/
[1] P.-L. Lions, “Compacité des solutions des équations de Navier–Stokes compressibles isentropiques”, C. R. Acad. Sci. Paris. Sér. I Math., 317:1 (1993), 115–120 | MR | Zbl
[2] P.-L. Lions, “Bornes sur la densité pour les équations de Navier–Stokes compressibles isentropiques avec conditions aux limites de Dirichlet”, C. R. Acad. Sci. Paris. Sér. I Math., 328:8 (1999), 659–662 | MR | Zbl
[3] E. Feireisl, Š. Matušů-Nečasová, H. Petzeltová, I. Straškraba, “On the motion of a viscous compressible fluid driven by a time-periodic external force”, Arch. Ration. Mech. Anal., 149:1 (1999), 69–96 | DOI | MR | Zbl
[4] E. Feireisl, “On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable”, Comment. Math. Univ. Carolin., 42:1 (2001), 83–98 | MR | Zbl
[5] E. Feireisl, A. H. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl
[6] P.-L. Lions, Mathematical topics in fluid dynamics. Vol. 2. Compressible models, Oxford Lecture Ser. Math. Appl., 10, Oxford Univ. Press, New York, 1998 | MR | Zbl
[7] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004 | MR | Zbl
[8] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004 | MR | Zbl
[9] P.-L. Lions, “On some challenging problems in nonlinear partial differential equations”, Mathematics: frontiers and perspectives, ed. V. Arnold et al., Amer. Math. Soc., Providence, RI, 2000, 121–135 | MR | Zbl
[10] P. I. Plotnikov, J. Sokolowski, “Concentrations of solutions to time-discretized compressible Navier–Stokes equations”, Comm. Math. Phys., 258:3 (2005), 567–608 | DOI | MR | Zbl
[11] J. Frehse, S. Goj, M. Steinhauer, “$L^p$-estimates for the Navier–Stokes equations for steady compressible flow”, Manuscripta Math., 116:3 (2005), 265–275 | DOI | MR | Zbl
[12] R. J. DiPerna, A. J. Majda, “Concentrations in regularizations for 2-D incompressible flow”, Comm. Pure Appl. Math., 40:3 (1987), 301–345 | DOI | MR | Zbl
[13] L. Tartar, “Compensated compactness and applications to partial differential equations”, Nonlinear analysis and mechanics: Heriot–Watt symposium, vol. 4 (Edinburgh, 1979), Res. Notes in Math., 39, Pitman, Boston, 1979, 136–212 | MR | Zbl
[14] J. M. Ball, “A version of the fundamental theorem for Young measures”, PDEs and continuum models of phase transitions (Nice, France, 1988), Lecture Notes in Phys., 344, Springer, Berlin, 1989, 207–215 | MR | Zbl
[15] J. Málek, J. Nečas, M. Rokyta, M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, Appl. Math. Math. Comput., 13, Chapman and Hall, London, 1996 | MR | Zbl
[16] P. Pedregal, Parametrized measures and variational principles, Progr. Nonlinear Differential Equations Appl., 30, Birkhäuser, Basel, 1997 | MR | Zbl
[17] D. Adams, “On the existence of capacitary strong type estimates in $R\sp{n}$”, Ark. Mat., 14:1 (1976), 125–140 | DOI | MR | Zbl
[18] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR
[19] D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1995 | MR | Zbl
[20] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[21] L. Ambrosio, F. Bouchut, C. De Lilles, “Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions”, Comm. Partial Differential Equations, 29:9–10 (2004), 1635–1651 | DOI | MR | Zbl
[22] P. I. Plotnikov, J. Sokolowski, “Domain dependence of solutions to compressible Navier–Stokes equations”, SIAM J. Control Optim., 45:4 (2006), 1165–1197 | DOI | MR | Zbl