Stationary solutions of Navier–Stokes equations for diatomic gases
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 561-593 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the first boundary-value problem for the stationary Navier–Stokes equations of viscous gas dynamics has renormalized solutions for all values of the adiabatic exponent in the interval $(4/3,3/2]$.
@article{RM_2007_62_3_a7,
     author = {P. I. Plotnikov and J. Sokolowski},
     title = {Stationary solutions of {Navier{\textendash}Stokes} equations for diatomic gases},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {561--593},
     year = {2007},
     volume = {62},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a7/}
}
TY  - JOUR
AU  - P. I. Plotnikov
AU  - J. Sokolowski
TI  - Stationary solutions of Navier–Stokes equations for diatomic gases
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 561
EP  - 593
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a7/
LA  - en
ID  - RM_2007_62_3_a7
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%A J. Sokolowski
%T Stationary solutions of Navier–Stokes equations for diatomic gases
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 561-593
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a7/
%G en
%F RM_2007_62_3_a7
P. I. Plotnikov; J. Sokolowski. Stationary solutions of Navier–Stokes equations for diatomic gases. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 561-593. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a7/

[1] P.-L. Lions, “Compacité des solutions des équations de Navier–Stokes compressibles isentropiques”, C. R. Acad. Sci. Paris. Sér. I Math., 317:1 (1993), 115–120 | MR | Zbl

[2] P.-L. Lions, “Bornes sur la densité pour les équations de Navier–Stokes compressibles isentropiques avec conditions aux limites de Dirichlet”, C. R. Acad. Sci. Paris. Sér. I Math., 328:8 (1999), 659–662 | MR | Zbl

[3] E. Feireisl, Š. Matušů-Nečasová, H. Petzeltová, I. Straškraba, “On the motion of a viscous compressible fluid driven by a time-periodic external force”, Arch. Ration. Mech. Anal., 149:1 (1999), 69–96 | DOI | MR | Zbl

[4] E. Feireisl, “On compactness of solutions to the compressible isentropic Navier–Stokes equations when the density is not square integrable”, Comment. Math. Univ. Carolin., 42:1 (2001), 83–98 | MR | Zbl

[5] E. Feireisl, A. H. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3:4 (2001), 358–392 | DOI | MR | Zbl

[6] P.-L. Lions, Mathematical topics in fluid dynamics. Vol. 2. Compressible models, Oxford Lecture Ser. Math. Appl., 10, Oxford Univ. Press, New York, 1998 | MR | Zbl

[7] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Ser. Math. Appl., 26, Oxford Univ. Press, Oxford, 2004 | MR | Zbl

[8] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Ser. Math. Appl., 27, Oxford Univ. Press, Oxford, 2004 | MR | Zbl

[9] P.-L. Lions, “On some challenging problems in nonlinear partial differential equations”, Mathematics: frontiers and perspectives, ed. V. Arnold et al., Amer. Math. Soc., Providence, RI, 2000, 121–135 | MR | Zbl

[10] P. I. Plotnikov, J. Sokolowski, “Concentrations of solutions to time-discretized compressible Navier–Stokes equations”, Comm. Math. Phys., 258:3 (2005), 567–608 | DOI | MR | Zbl

[11] J. Frehse, S. Goj, M. Steinhauer, “$L^p$-estimates for the Navier–Stokes equations for steady compressible flow”, Manuscripta Math., 116:3 (2005), 265–275 | DOI | MR | Zbl

[12] R. J. DiPerna, A. J. Majda, “Concentrations in regularizations for 2-D incompressible flow”, Comm. Pure Appl. Math., 40:3 (1987), 301–345 | DOI | MR | Zbl

[13] L. Tartar, “Compensated compactness and applications to partial differential equations”, Nonlinear analysis and mechanics: Heriot–Watt symposium, vol. 4 (Edinburgh, 1979), Res. Notes in Math., 39, Pitman, Boston, 1979, 136–212 | MR | Zbl

[14] J. M. Ball, “A version of the fundamental theorem for Young measures”, PDEs and continuum models of phase transitions (Nice, France, 1988), Lecture Notes in Phys., 344, Springer, Berlin, 1989, 207–215 | MR | Zbl

[15] J. Málek, J. Nečas, M. Rokyta, M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, Appl. Math. Math. Comput., 13, Chapman and Hall, London, 1996 | MR | Zbl

[16] P. Pedregal, Parametrized measures and variational principles, Progr. Nonlinear Differential Equations Appl., 30, Birkhäuser, Basel, 1997 | MR | Zbl

[17] D. Adams, “On the existence of capacitary strong type estimates in $R\sp{n}$”, Ark. Mat., 14:1 (1976), 125–140 | DOI | MR | Zbl

[18] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[19] D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1995 | MR | Zbl

[20] R. J. DiPerna, P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl

[21] L. Ambrosio, F. Bouchut, C. De Lilles, “Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions”, Comm. Partial Differential Equations, 29:9–10 (2004), 1635–1651 | DOI | MR | Zbl

[22] P. I. Plotnikov, J. Sokolowski, “Domain dependence of solutions to compressible Navier–Stokes equations”, SIAM J. Control Optim., 45:4 (2006), 1165–1197 | DOI | MR | Zbl