Orthonormal quaternion frames, Lagrangian evolution equations, and the three-dimensional Euler equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 535-560 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

More than 160 years after their invention by Hamilton, quaternions are now widely used in the aerospace and computer animation industries to track the orientation and paths of moving objects undergoing three-axis rotations. Here it is shown that they provide a natural way of selecting an appropriate orthonormal frame — designated the quaternion-frame — for a particle in a Lagrangian flow, and of obtaining the equations for its dynamics. How these ideas can be applied to the three-dimensional Euler fluid equations is then considered. This work has some bearing on the issue of whether the Euler equations develop a singularity in a finite time. Some of the literature on this topic is reviewed, which includes both the Beale–Kato–Majda theorem and associated work on the direction of vorticity by Constantin, Fefferman, and Majda and by Deng, Hou, and Yu. It is then shown how the quaternion formalism provides an alternative formulation in terms of the Hessian of the pressure.
@article{RM_2007_62_3_a6,
     author = {J. Gibbon},
     title = {Orthonormal quaternion frames, {Lagrangian} evolution equations, and the three-dimensional {Euler} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {535--560},
     year = {2007},
     volume = {62},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_3_a6/}
}
TY  - JOUR
AU  - J. Gibbon
TI  - Orthonormal quaternion frames, Lagrangian evolution equations, and the three-dimensional Euler equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 535
EP  - 560
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_3_a6/
LA  - en
ID  - RM_2007_62_3_a6
ER  - 
%0 Journal Article
%A J. Gibbon
%T Orthonormal quaternion frames, Lagrangian evolution equations, and the three-dimensional Euler equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 535-560
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2007_62_3_a6/
%G en
%F RM_2007_62_3_a6
J. Gibbon. Orthonormal quaternion frames, Lagrangian evolution equations, and the three-dimensional Euler equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 3, pp. 535-560. http://geodesic.mathdoc.fr/item/RM_2007_62_3_a6/

[1] J. J. O'Connor, E. F. Robertson, Sir William Rowan Hamilton, , 1998 http://www-groups.dcs.st-and.ac.uk/h̃istory/Mathematicians/Hamilton.html

[2] A. J. Hanson, Visualizing quaternions, Elsevier, London, 2006

[3] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 ; V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978 | MR | Zbl | MR | Zbl

[4] J. E. Marsden, Lectures on geometric methods in mathematical physics, CBMS-NSF Regional Conf. Ser. in Appl. Math., 37, SIAM, Philadelphia, 1981 | MR | Zbl

[5] J. E. Marsden, Lectures on mechanics, London Math. Soc. Lecture Note Ser., 174, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[6] A. Cayley, “On certain results being related to quaternions”, Phil. Mag., 26 (1845), 141–145

[7] W. R. Hamilton, Lectures on quaternions, Cambridge Univ. Press, Cambridge, 1853

[8] W. R. Hamilton, Elements of quaternions, Cambridge Univ. Press, Cambridge, 1866 ; Chelsea Publ., New York, 1969 | Zbl | MR

[9] P. G. Tait, An elementary treatise on quaternions, 3rd ed., Cambridge Univ. Press, Cambridge, 1890 | Zbl

[10] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Dover, New York, 1944 | MR | Zbl

[11] F. Klein, The mathematical theory of the top. Lectures delivered on the occasion of the sesquicentennial celebration of Princeton University, Dover Phoenix Ed., 2, Dover, Mineola, 2004 | Zbl

[12] J. B. Kuipers, Quaternions and rotation sequences. A primer with applications to orbits, aerospace, and virtual reality, Princeton Univ. Press, Princeton, 1999 | MR | Zbl

[13] K. Shoemake, “Animating rotation with quaternion curves”, Comput. Graphics, 19:3 (1985), 245–254 | DOI

[14] V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Appl. Math. Sci., 125, Springer-Verlag, New York, 1998 | MR | Zbl

[15] A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts Appl. Math., 27, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[16] G. K. Batchelor, An introduction to fluid dynamics, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[17] P. G. Saffman, Vortex dynamics, Cambridge Monogr. Mech. Appl. Math., Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[18] H. K. Moffatt, S. Kida, K. Ohkitani, “Stretched vortices – the sinews of turbulence; large-Reynolds-number asymptotics”, J. Fluid Mech., 259 (1994), 241–264 | DOI | MR

[19] A. La Porta, G. A. Voth, A. Crawford, J. Alexander, E. Bodenschatz, “Fluid particle accelerations in fully developed turbulence”, Nature, 409 (2001), 1017–1019 | DOI

[20] N. Mordant, P. Metz, O. Michel, J.-F. Pinton, “Measurement of Lagrangian velocity in fully developed turbulence”, Phys. Rev. Lett., 87:21 (2001), 214501 | DOI

[21] G. A. Voth, A. La Porta, A. Crawford, J. Alexander, E. Bodenschatz, “Measurement of particle accelerations in fully developed turbulence”, J. Fluid Mech., 469:1 (2002), 121–160 | DOI | Zbl

[22] N. Mordant, A. M. Crawford, E. Bodenschatz, “Three-dimensional structure of the Lagrangian acceleration in turbulent flows”, Phys. Rev. Lett., 93:21 (2004), 214501 | DOI

[23] N. Mordant, E. Lévêque, J.-F. Pinton, “Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence”, New J. Phys., 6:1 (2004), 1–116 | DOI

[24] N. Mordant, P. Metz, J.-F. Pinton, O. Michel, “Acoustical technique for Lagrangian velocity measurement”, Rev. Sci. Instrum., 76:2 (2005), 025105 | DOI

[25] B. A. Lüthi, A. Tsinober, W. Kinzelbach, “Lagrangian measurement of vorticity dynamics in turbulent flow”, J. Fluid Mech., 528 (2005), 87–118 | DOI | Zbl

[26] L. Biferale, G. Boffetta, A. Celani, A. Lanotte, F. Toschi, “Particle trapping in three-dimensional fully developed turbulence”, Phys. Fluids, 17:2 (2005), 021701 | DOI

[27] A. M. Reynolds, N. Mordant, A. M. Crawford, E. Bodenschatz, “On the distribution of Lagrangian accelerations in turbulent flows”, New J. Phys., 7 (2005), 58 | DOI

[28] W. Braun, F. De Lillo, B. Eckhardt, “Geometry of particle paths in turbulent flows”, J. Turbul., 7 (2006), 62 | DOI | MR

[29] E. Dresselhaus, M. Tabor, “The kinematics of stretching and alignment of material elements in general flow fields”, J. Fluid Mech., 236 (1991), 415–444 | DOI | MR

[30] H. K. Moffatt, Magnetic field generation in electrically conducting fluids, Cambridge Univ. Press, Cambridge, 1978 ; G. Moffat, Vozbuzhdenie magnitnogo polya v provodyaschei srede, Mir, M., 1980 | Zbl

[31] J. Norbury, I. Roulstone (eds.), Large-scale atmosphere-ocean dynamics, vol. 1, 2, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR | MR | Zbl | Zbl

[32] A. J. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant Lect. Notes Math., 9, Amer. Math. Soc., Providence, 2003 | MR | Zbl

[33] M. J. P. Cullen, A mathematical theory of large-scale atmosphere/ocean flow, Imperial College Press, London, 2006

[34] G. Falkovich, K. Gawedzki, M. Vergassola, “Particles and fields in fluid turbulence”, Rev. Modern Phys., 73:4 (2001), 913–975 | DOI | MR

[35] H. Ertel, “Ein neuer hydrodynamischer Wirbelsatz”, Met. Z., 59 (1942), 277–281 | Zbl

[36] K. Ohkitani, “Eigenvalue problems in three-dimensional Euler flows”, Phys. Fluids A, 5:10 (1993), 2570–2572 | DOI | MR | Zbl

[37] V. E. Zakharov, E. A. Kuznetsov, “Gamiltonovskii formalizm dlya nelineinykh voln”, UFN, 167:11 (1997), 1137–1167 | DOI

[38] C. Truesdell, R. A. Toupin, “The classical field theories”, Encyclopaedia of physics, vol. 3, part 1, ed. S. Flügge, Springer, Berlin, 1960, 226–793 | MR

[39] A. Viúdez, “On Ertel's potential vorticity theorem. On the impermeability theorem for potential vorticity”, J. Atmos. Sci., 56:4 (1999), 507–516 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[40] K. Ohkitani, S. Kishiba, “Nonlocal nature of vortex stretching in an inviscid fluid”, Phys. Fluids, 7:2 (1995), 411–421 | DOI | MR | Zbl

[41] V. I. Yudovich, “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, ZhVM i MF, 3 (1963), 1032–1066 | MR | Zbl

[42] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatgiz, M., 1961 ; O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, 1963 | MR | Zbl | MR | Zbl

[43] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Univ. Chicago Press, Chicago, 1988 | MR | Zbl

[44] C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes equations and turbulence, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[45] J. T. Stuart, “Nonlinear Euler partial differential equations: singularities in their solution”, Applied mathematics, fluid mechanics, astrophysics (Cambridge, MA, USA, 1987), eds. D. J. Benney, F. H. Shu, Chi Yuan, World Sci. Publ., Singapore, 1988, 81–95 | MR

[46] J. T. Stuart, “The Lagrangian picture of fluid motion and its implication for flow structures”, IMA J. Appl. Math., 46:1–2 (1991), 147–163 | DOI | MR | Zbl

[47] J. T. Stuart, “Singularities in three-dimensional compressible Euler flows with vorticity”, Theoret. Comput. Fluid Dyn., 10:1–4 (1998), 385–391 | DOI | Zbl

[48] J. D. Gibbon, A. Fokas, C. R. Doering, “Dynamically stretched vortices as solutions of the 3D Navier–Stokes equations”, Phys. D, 132:4 (1999), 497–510 | DOI | MR | Zbl

[49] K. Ohkitani, J. D. Gibbon, “Numerical study of singularity formation in a class of Euler and Navier–Stokes flows”, Phys. Fluids, 12:12 (2000), 3181–3194 | DOI | MR

[50] P. Constantin, “The Euler equations and nonlocal conservative Riccati equations”, Internat. Math. Res. Notices, 2000, no. 9, 455–465 | DOI | MR | Zbl

[51] J. D. Gibbon, D. R. Moore, J. T. Stuart, “Exact, infinite energy, blow-up solutions of the three-dimensional Euler equations”, Nonlinearity, 16:5 (2003), 1823–1831 | DOI | MR | Zbl

[52] J. T. Beale, T. Kato, A. Majda, “Remarks on the breakdown of smooth solutions for the 3D Euler equations”, Comm. Math. Phys., 94:1 (1984), 61–66 | DOI | MR | Zbl

[53] G. Ponce, “Remarks on a paper [‘Remarks on the breakdown of smooth solutions for the 3D Euler equations’] by J. T. Beale, T. Kato and A. Majda”, Comm. Math. Phys., 98:3 (1985), 349–353 | DOI | MR | Zbl

[54] H. Kozono, Y. Taniuchi, “Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations”, Comm. Math. Phys., 214:1 (2000), 191–200 | DOI | MR | Zbl

[55] P. Constantin, “Geometric statistics in turbulence”, SIAM Rev., 36:1 (1994), 73–98 | DOI | MR | Zbl

[56] P. Constantin, C. Fefferman, A. Majda, “Geometric constraints on potentially singular solutions for the 3-D Euler equation”, Comm. Partial Differential Equations, 21:3–4 (1996), 559–571 | MR | Zbl

[57] J. Deng, T. Y. Hou, X. Yu, “Geometric properties and non-blowup of 3D incompressible Euler flow”, Comm. Partial Differential Equations, 30:1–2 (2005), 225–243 | DOI | MR | Zbl

[58] J. Deng, T. Y. Hou, X. Yu, “Improved geometric condition for non-blowup of the 3D incompressible Euler equation”, Comm. Partial Differential Equations, 31:2 (2006), 293–306 | DOI | MR | Zbl

[59] J. D. Gibbon, D. D. Holm, R. M. Kerr, I. Roulstone, “Quaternions and particle dynamics in Euler fluid flow”, Nonlinearity, 19:8 (2006), 1969–1983 | DOI | MR | Zbl

[60] A. Sudbery, “Quaternionic analyis”, Math. Proc. Cambridge Philos. Soc., 85:2 (1979), 199–225 | DOI | MR | Zbl

[61] A. S. Fokas, D. A. Pinotsis, “Quaternions, evaluation of integrals and boundary value problems”, Comput. Methods Funct. Theory (to appear) | MR

[62] J. D. Gibbon, D. D. Holm, Lagrangian particle paths and ortho-normal quaternion frames, arXiv: nlin.CD/0607020 | MR

[63] B. Galanti, J. D. Gibbon, M. Heritage, “Vorticity alignment results for the three-dimensional Euler and Navier–Stokes equations”, Nonlinearity, 10:6 (1997), 1675–1694 | DOI | MR | Zbl

[64] J. D. Gibbon, B. Galanti, R. M. Kerr, R. M., “Stretching and compression of vorticity in the 3D Euler equations”, Turbulence structure and vortex dynamics (Cambridge, 1999), eds. J. C. R. Hunt, J. C. Vassilicos, Cambridge Univ. Press, Cambridge, 2000, 23–34 | MR | Zbl

[65] J. D. Gibbon, “A quaternionic structure in the three-dimensional Euler and ideal magneto-hydrodynamics equation”, Phys. D, 166:1–2 (2002), 17–28 | DOI | MR | Zbl

[66] D. Chae, “Remarks on the blow-up of the Euler equations and the related equations”, Comm. Math. Phys., 245:3 (2004), 539–550 | DOI | MR | Zbl

[67] D. Chae, “On the finite time singularities of the 3D incompressible Euler equations”, Comm. Pure Appl. Math., 60:4 (2007), 597–617 | DOI | MR | Zbl

[68] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, U. Frisch, “Small-scale structure of the Taylor–Green vortex”, J. Fluid Mech., 130 (1983), 411–452 | DOI | Zbl

[69] M. E. Brachet, V. Meneguzzi, A. Vincent, H. Politano, P.-L. Sulem, “Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows”, Phys. Fluids A, 4:12 (1992), 2845–2854 | DOI | Zbl

[70] A. Pumir, E. Siggia, “Collapsing solutions to the 3-D Euler equations”, Phys. Fluids A, 2:2 (1990), 220–241 | DOI | MR | Zbl

[71] R. M. Kerr, “Evidence for a singularity of the three-dimensional, incompressible Euler equations”, Phys. Fluids A, 5:7 (1993), 1725–1746 | DOI | MR | Zbl

[72] R. M. Kerr, “Vorticity and scaling of collapsing Euler vortices”, Phys. Fluids, 17:7 (2005), 075103 | DOI | MR

[73] R. Grauer, C. Marliani, K. Germaschewski, “Adaptive mesh refinement for singular solutions of the incompressible Euler equations”, Phys. Rev. Lett., 80:19 (1998), 4177–4180 | DOI

[74] O. N. Boratav, R. B. Pelz, “Direct numerical simulation of transition to turbulence from a high-symmetry initial condition”, Phys. Fluids, 6:8 (1994), 2757–2784 | DOI | MR | Zbl

[75] R. B. Pelz, “Symmetry and the hydrodynamic blow-up problem”, J. Fluid Mech., 444 (2001), 299–320 | DOI | MR | Zbl

[76] T. Y. Hou, R. Li, “Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations”, J. Nonlinear Sci., 16:6 (2006), 639–664 | DOI | MR | Zbl

[77] W. Pauls, T. Matsumoto, U. Frisch, J. Bec, “Nature of complex singularities for the 2D Euler equation”, Phys. D, 219:1 (2006), 40–59 | DOI | MR | Zbl

[78] T. Kato, “Nonstationary flows of viscous and ideal fluids in $\mathbb{R}^3$”, J. Funct. Anal., 9:3 (1972), 296–305 | DOI | MR | Zbl

[79] R. M. Kerr, Computational Euler history, arXiv: physics/0607148

[80] D. Cordoba, C. Fefferman, “On the collapse of tubes carried by 3D incompressible flows”, Comm. Math. Phys., 222:2 (2001), 293–298 | DOI | MR | Zbl

[81] A. Shnirelman, “On the nonuniqueness of weak solution of the Euler equation”, Comm. Pure Appl. Math., 50:12 (1997), 1261–1286 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[82] E. Tadmor, “On a new scale of regularity spaces with applications to Euler's equations”, Nonlinearity, 14:3 (2001), 513–532 | DOI | MR | Zbl

[83] D. Chae, “On the Euler equations in the critical Triebel–Lizorkin spaces”, Arch. Ration. Mech. Anal., 170:3 (2003), 185–210 | DOI | MR | Zbl

[84] D. Chae, “Local existence and blow-up criterion for the Euler equations in the Besov spaces”, Asymptot. Anal., 38:3–4 (2004), 339–358 | MR | Zbl

[85] D. Chae, “Remarks on the blow-up criterion of the three-dimensional Euler equations”, Nonlinearity, 18:3 (2005), 1021–1029 | DOI | MR | Zbl

[86] J. D. Gibbon, D. D. Holm, Lagrangian analysis of alignment dynamics for isentropic compressible magnetohydrodynamics, arXiv: nlin.CD/0608009

[87] Li Yi, C. Meneveau, “Origin of non-Gaussian statistics in hydrodynamic turbulence”, Phys. Rev. Lett., 95:16 (2005), 164502 | DOI